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Abstract
Microarrays are revolutionising the way in which biological experiments are car-

ried out. They allow thousands of genes to be studied, unlike traditional wet-lab

experiments. A main aim of molecular biology is to understand how the functions

of genes relate to each other. These relationships can be depicted in gene networks.

Existing data mining techniques for extracting gene networks from microarray data

have suffered from two major weaknesses – limiting the number of genes and the

number of consecutive time frames that can be incorporated into the construction

process. This is because microarray data is dense rendering many data mining

techniques infeasible.

A new family of top-down association rule mining algorithms have emerged to

facilitate mining in dense datasets. However, until now, all the algorithms proposed

rely on the support measure to prune the search space. This is a major shortcoming

as it results in the pruning of many potentially interesting relationships which have

low support and high confidence.

In this thesis we provide the first comprehensive solution to globally mine microar-

ray data in a top-down manner without the support-threshold. An evaluation of our

algorithm MAXCONF against an existing support pruning method, shows that we

increase recall from 0.15% to 94%.

We also propose the first top-down algorithm (SEQRE) for sequential pattern min-

ing. SEQRE efficiently mines sequential patterns from temporal data considering

all consecutive time frames and all genes. Our approach identifies many biological

relationships and is the first algorithm which has been able to handle the complexity

of the temporal microarray datasets. Finally we will synthesise and visualise gene

networks based on the relationships discovered with MAXCONF and SEQRE.

We provide complete, principled and efficient solutions for the mining, integration

and analysis of microarrays.
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Chapter 1

Introduction

The increasing volume of biological data collected in recent years requires the

development of efficient bioinformatic tools for genomic and proteomic data anal-

ysis. The microarray is revolutionary in the biological domain as it allows one to

study the behaviour of all the genes within a cell in only one experiment. How-

ever most genes known to be involved in a particular process are still identified in

painstaking wet-lab experiments which allow only a few genes to be studied at a

time. This is not due to the problems in microarray experiments, but in the analysis

and interpretation of the large volumes of data.

One main objective of biologists is to develop a deeper understanding of the differ-

ent mechanisms by which different cells control and regulate the transcription of

their genes. More specifically, to extract gene regulatory networks from microarray

data.

This thesis presents association rule mining and sequential pattern mining ap-

proaches to extracting gene networks from two distinct forms of microarray data.

This chapter outlines the motivation and aims, along with the research contribu-

tions, of this project.

1
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1.1 Motivation and Aims

Bioinformatics is providing researchers with analysis methods not considered pos-

sible until recently. The information gathered from bioinformatic analysis provides

insight into the unknown data, suggesting new hypotheses directing researchers to

design appropriate or more precise experiments to solve their specific problems.

This is extremely valuable as prior knowledge often reduces the number of tedious

time consuming lab experiments required. For example, knowing a protein’s pre-

dicted function, experiments can be designed precisely around this, leading to a re-

sult much more effectively. In comparison, if no information is known in advance

many trial and error experiments are likely to be conducted before any concrete

research direction is identified.

The functions of many genes and their relationships with other genes remain un-

known. Further with the advances in experimental techniques, many new discov-

eries are made with genes whose function and relationships were once considered

understood.

Extracting gene relationships within an organisms is traditionally a tedious task,

and will continue to be if the wealth of information hidden within microarray data

is not analysed effectively. Microarray data contains the expression levels of thou-

sands of genes (N) in M various experiments, and is often expressed as a N x M

matrix.

Existing methods for predicting gene networks are limited by the number of genes

and consecutive time points that can be analysed. This issue is a direct conse-

quence of the existing algorithms which are exponential with respect to the number

of genes and times studied. Considering the number of genes on a single microar-

ray is in the thousands if not tens of thousands, it is unacceptable to limit the genes

investigated. In addition, temporal expression data reveals many important gene

relationships. Furthermore with the cost of a single microarray experiment ex-

ceeding $1000 U.S (DFCI) it is in a biologists best interest to identify all potential

gene relationships from the data.

The aim of this project is to develop efficient methods for generating gene networks
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which do not impose a limitation on the number of genes or the consecutive time

points that can be analysed. Such a scheme would benefit biologists tremendously.

1.2 Contributions

This work contributes to the field of data mining allowing effective analysis of mi-

croarrays to infer gene networks. These contributions are summarised as follows:

1. Three main weaknesses in existing gene network extracting methods have

been identified:

(a) Only a few genes can be analysed at a time

(b) Scalability is unacceptable

(c) Only one consecutive time frame can be studied

These points have been solved in this thesis.

2. A survey of bottom-up and top-down association rule mining algorithms,

critiquing their potential for identifying gene networks is provided.

Top-down approaches are superior to traditional bottom-up methods and

other prediction methods as they do not impose a limit on the number of

genes studied. However pruning based on support poses other limitations:

(a) Rules identified describe gene relationships that are mostly well known

and are present across the majority of the experiments. A main goal of

microarray experiments is to uncover the specific gene relationships of

each experimental scenario.

(b) Many high confidence rules which exhibit low support remain undis-

covered, due to support pruning

(c) Rule set has extremely low recall for gene relationships

3. An investigation of association rule mining algorithms that are designed to

identify high confidence rules without support pruning is provided. Previous
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methods are bottom-up and as such are not applicable to global analysis of

microarrays or other dense datasets.

4. The Weak Downward Closure property of confidence is defined, allowing

significant improvements on top-down rule mining algorithms (Section 5.2.2).

5. A confidence based top-down algorithm (MAXCONF) for identifying inter-

esting gene relationships on a global genome scale is proposed and imple-

mented. This algorithm efficiently identifies high confidence rules without

support pruning achieving significant recall improvements (Section 5.2).

6. Identified the importance of incorporating all time frames when predicting

gene networks from sequential microarrays. Previous prediction methods are

restricted to analysing only two time frames, losing important information.

7. An efficient top-down Maximal Sequential Pattern mining algorithm (SEQRE)

is provided which considers all consecutive time frames and can be applied

to all genes (2-D global analysis of temporal data). This algorithm will ben-

efit biologists significantly who till now have not being able to analyse tem-

poral microarray data on a 2-D global scale (Section 6.2).

This is made feasible by:

(a) incorporating the Downward Closure property of support to allow more

effective pruning to take place.

8. A systematic framework to validate the rules discovered using two highly

regarded biological databases, BIND and the Gene Ontology has been de-

signed. These databases allow us to evaluate all our results against previous

methods with respect to recall and biological significance. (Section 5.4.2)

9. A framework and algorithm is provided that generates Local Gene Networks

(Section 6.4). These networks effectively describe the identified gene rela-

tionships.

(a) As the number of relationships discovered is extremely large, a Local

Gene Network can be constructed around a specific gene of interest.

(b) A method to visualise the LGN is also provided, clearly showing the
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various types of relationships.

(c) Can be used for both sequential and non-sequential relationships.

(d) Allows biologists to navigate through the large rule set with ease.

1.3 Thesis Overview

This thesis covers the design and evaluation of two new data mining algorithms

capable of extracting gene networks from microarrays that are not discovered with

existing methods.

Chapter 2 introduces some key concepts of molecular biology and the current is-

sues concerning biologists, with respect to microarray analysis. The information

provided signals the need for effective methods to extract gene networks from mi-

croarrays. Finally the microarray datasets used during this study are presented.

Chapter 3 presents a more thorough overview of existing methods to extract gene

networks from microarray data. It concludes by formulating the weaknesses of

these approaches into a motivated research direction.

Chapter 4 introduces the frequent itemset mining and association rule mining prob-

lems.

Chapter 5 presents our top-down approach to mine Maximal Confidence Rules from

perturbation data. A detailed evaluation of our method is provided, highlighting the

advantages of our approach to extracting gene relationships.

Chapter 6 details a top-down sequential pattern mining algorithm to extract gene

networks from temporal microarray data. Our method is able to incorporate all

genes and consecutive time points into the analysis effectively. Following an eval-

uation, it concludes by detailing a method to generate and visualise gene networks

based on the relationships we discover in this chapter and the previous.

Chapter 7 discusses possible direction for future work. It concludes this thesis by

summarising the main contributions of our research and affirming its significance

in the fields of data mining and molecular biology.



Chapter 2

Molecular Biology

Molecular Biology is the study of biochemical and molecular interactions within

living cells, providing other fields of biology including biomedicine and agriculture

with invaluable knowledge to base their research on.

This chapter will introduce some key concepts of molecular biology which build a

basis for our research objective. Gene networks are defined and the importance of

extracting such networks from microarrays is also emphasised. We describe two

well-known microarray datasets which we will use to evaluate our new data mining

techniques.

2.1 Yeast

Molecular biology is most effectively studied in small organisms, which rapidly

breed. Sacchrymyces cerevisciae commonly known as budding yeast is one of

the simplest organisms with many underlying molecular processes common to hu-

mans. As such, yeast is one of the most well-studied organisms, with its entire

genome sequenced and many well-regarded microarray datasets publicly available.

Furthermore, there is a large repository of comprehensive biochemistry, genetics

and molecular cell biology knowledge available which we will take advantage of

to evaluate the methods we propose.

6
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2.2 Gene Expression

The simplest self-stabilising unit in an organism is the cell. It must integrate the

activity of its components to form a functional entity and respond to multiple sig-

nals in a robust manner. Much current research in molecular biology is focused on

discovering and understanding the mechanisms by which cells achieve this.

Cells are comprised of DNA, RNA and protein molecules. DNA molecules con-

tain genetic information in the form of genes, which in turn specify the structure

and composition of a single protein. Gene Expression refers to the process of tran-

scribing a gene’s DNA sequence into a messenger RNA (mRNA) transcript which

serves as a template for protein synthesis. During protein synthesis the resulting

mRNA is translated into chains of amino acids, which are then transformed via

folding and various chemical reactions into a three dimensional functional protein.

All proteins within the cell are the result of the expression of its corresponding

gene. An overview of gene expression is illustrated in Figure 2.1.

The functional state of a cell is influenced by the expression profile of its genes, that

is, which genes are expressed or not and at what degree. However, it is the resulting

proteins which are the active constituents of the cell that essentially control its

behaviour and are responsible for almost all cellular duties.

Gene expression is often a highly complex and controlled process. Every cell in

an organism contains an identical set of genes, however different types of cells

vary in what genes they express and when. The expression level of a single gene is

highly dependent on the distribution of the proteins within a cell. The primary form

of gene expression regulation (Gene Regulation) is the control of transcription by

either activation or repression. Generally specific proteins called Transcription

Factors, induce this control. Gene expression activation refers to the initiation of

a gene being transcribed. This is usually carried out by activating transcription

factors that recruit various other proteins which work together to transcribe the

gene. For example in Figure 2.1 the protein labelled X activates the expression of

Gene Y , which in turn leads to the formation of protein Z. On the other hand, a

transcription factor which interferes with the transcription process of a gene is said

to repress that genes expression.
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Figure 2.1: (a) Genetic information flow in a cell. Information encoded within the

DNA is transcribed into messenger RNA and translated into proteins, the active

constituents of a cell. (b) Gene expression complexity is dramatically increased

when more than one gene is involved and several proteins are produced. Here

the final proteins act together as a single functional unit.

Therefore the regulation of a single gene commonly depends on the presence and

absence of various different proteins, and thus requires the prior regulation of the

genes encoding these proteins.

2.3 Gene Networks

Molecular biologists are aiming to uncover the functions of unknown genes and

their inter-gene dependencies leading up to their expression. Genes work together

as a team to perform cellular tasks that no one gene can do alone. To accomplish a

single task, many genes may need to be activated or repressed at different times. A

Gene Network describes the interconnected functional relationships between genes

and illustrates the ordered flow of complex events leading up to another gene’s

expression control or some cellular function. For example part of the network in

Figure 2.2 can be interpreted as follows:

FUS3 activates the expression of gene FAR1. FAR1 inhibits CLN1,
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Figure 2.2: Gene Network corresponding to a snippet of the Yeast Cell

Cycle. Compiled by Kanehisa and Goto (2000)

CLN2 and CDC28. In the absence of FAR1, SIC1 will be activated
and in-turn inhibit CLB5, CLB6 and CDC28.

The intricate details of gene networks, can assist biomedical research into the un-

derlying cause of disease and to assist in alleviating symptoms and ultimately a

cure. This is best explained through the following example:

Diversion from normal physiology is often accompanied by a change in gene ex-

pression. Medical researchers are now provided with an opportunity to compare the

level of which different genes are expressed between diseased and normal tissues.

For example, more than 50% of all human cancers arise from either a mutation

in the p53 gene (rendering the protein product unable to perform its role) or non-

expression of the gene in the cancer cells (Lewin, 2000). It is now evident that the

protein p53 is vital for controlling cell growth and monitoring a cell’s integrity.

The identification of such genetic alterations is attracting the interest of the pharma-

ceutical industry which see potential drug targets in differentially expressed genes.

However knowing which genes vary in expression between healthy and diseased

states is only the beginning of developing accurate medication. It is important to

understand the processes in which the gene is involved in and needed for. A par-

ticular gene may exhibit a dramatic change in expression, but it is possible that
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this is a result of another gene’s or group of genes’ expression changes. Therefore,

identifying gene networks is a major step in the discovery of gene targeting cures.

2.4 Microarrays

The profile of genes expressed in a cell can provide detailed information about

the state of the cell. The presence of a gene’s mRNA transcript within a cell in-

dicates that the gene is expressed. Further there is a strong correlation between

the expression level of a gene and the amount of mRNA within the cell. The re-

cently developed DNA microarray allows parallel genome-wide gene expression

measurements (level of mRNA present) of thousands of genes at a given instant in

time, under a given set of conditions for a given tissue/cell. Generation of microar-

ray data introduces a variety of quantitative data analysis issues not encounted in

traditional molecular biology or medicine.

The data generated from a series of microarray experiments is commonly in the

form of a NxM matrix of expression levels, where the N rows correspond to the

genes studied, and the M columns represent the various experimental conditions

of the cells under examination. Expression levels generally range between -4 to 4

where positive values correspond to higher expression (when a gene is activated)

and negative values correspond to lower expression (when a gene is repressed),

compared to a control experiment.

Various experimental designs can be performed using microarrays. These include

Temporal and Knockout experiments.

2.4.1 Knockout Experiments

Gene knockout experiments are based on the intuition that if a gene is no longer

able to function normally, it affects the expression of other genes that required its

presence. Each individual experiment corresponds to a cell which is genetically

altered to prevent the expression of a selected gene. By comparing the expression

levels of genes before and after a specific knockout, one should be able to infer
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what genes the knocked-out gene affects. For example in Figure 2.2, if the gene

FAR1 was knocked-out in yeast, we would expect genes CLN1, CLN2 and CDC28

to be expressed.

However this is non-trivial. For example when gene A is knocked-out, gene B

may be expressed, however we can not simply conclude that gene A prevents the

expression of gene B directly. Furthermore, each individual knockout experiment

is expensive on its own, as a result it is infeasible for each gene to be studied in

this way. Current evaluation methods limit their analysis to the knocked-out genes

and those which exhibit obvious changes across the experiments. This potentially

leaves many relationships undiscovered. Therefore there is a need for methods that

can be applied globally to study all genes on a microarray.

To evaluate our global approaches applicability to knockout microarrays, we ap-

ply our methods to the Hughes Compendium of yeast (Hughes et al., 2000). This

dataset contains 300 microarrays each corresponding to an individual gene being

selectively knocked out. These experiments measured the mRNA levels of 6316

genes of yeast.

2.4.2 Temporal Experiments

It is now becoming popular for microarray data to be in the form of a time series

(temporal). The data corresponds to changes in expression levels of genes within

a cell overtime typically spanning less than 20 time measurements. These exper-

iments not only allow us to see if gene A affects the expression of gene B, but if

gene A must be expressed significantly before gene B. For example, in Temporal

expression data corresponding to the genes in Figure 2.2, it would be expected that

the gene FUS3 is expressed before FAR1, as the presence of the protein FUS3 is

required to initiate the expression of FAR1.

We apply our sequential methods to the data of Spellman et al. (1998). This dataset

contains 76 gene expression measurements of the mRNA levels of 6177 genes in

yeast. These experiments were designed to analyse the changes in gene expression

during the cell cycle.
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2.4.3 Discretisation

As raw microarray data is continuous, it needs to be discretised before current

approaches can be applied successfully. For each dataset we discretise each gene

expression value into three categories: down-regulated, up-regulated, neither up

or down, by binning an expression value less than -0.2 for the log10 of the fold

change, a value greater than 0.2, or a value between -0.2 and 0.2 respectively. The

fold change is the ratio of observed expression levels compared to the control. This

binning approach is the most commonly used technique (Creighton and Hanash,

2003) when attempting to extract gene networks.

2.4.4 Computational Issues

Microarray experiments are revolutionary as they allow researchers to undertake

global gene expression analysis, as opposed to conventional expression methods,

which only allow the expression of a few genes to be studied in a single tedious and

laborious experiment. Interesting results are beginning to emerge from the use of

DNA microarrays to classify subtypes of cancer and to guide treatment decisions

(Shipp et al., 2002). Despite this, biologists are experiencing difficultly analysing

the copious amounts of expression data generated. Consequently, there is a consid-

erable interest in developing efficient data analysis algorithms to extract complex

relationships and to construct gene networks.

Various models, outlined in Chapter 3 have been proposed to solve these issues

each differing in their level of abstraction, and thus vary with the information they

provide. The algorithms for constructing and generating these models are inef-

ficient, requiring large amounts of memory and processing time. The networks

they generate exclude useful information as they are restricted to a small num-

ber of genes and consecutive time points. Therefore, there is a need for efficient

algorithms that can extract as many gene relationships as possible from microar-

ray data. Moreover, the networks and relationships need to be easily interpreted

and more importantly, information regarding a single gene must be easily retrieved

from a large gene network.
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2.5 Summary

This chapter gave a brief introduction to gene networks and the current issues

molecular biologists are facing as their technology advances at a much faster rate

then their analysis capabilities. We introduced the microarray technique which

contains a large amount of useful information which biologists currently have dif-

ficulty in analysing. A description of the various types of microarray datasets we

use to evaluate our approaches on was also provided.



Chapter 3

Learning problems associated

with Gene Networks

In the previous chapter gene networks and microarrays were introduced. This

chapter reviews the existing data mining methods used to extract gene relation-

ships from microarrays to construct gene networks. The individual strengths and

weaknesses of the main approaches are highlighted which will provide a strong

motivation for the research presented in this thesis.

3.1 Clustering

Clustering is the most commonly used technique for analysing microarray data,

grouping either genes with similar expression patterns or experiments with simi-

lar gene profiles together. Clustering has been successfully used to classify cancer

patients into more specific groups based on the expression profile of known can-

cer causing genes allowing for more personalised treatment regimes to be used

(Slonim et al., 2000). There has been extensive experimentation with various clus-

tering methods including Hierarchical clustering (Eisen et al., 1998) and Self Or-

ganising Maps (Toronen et al., 1999).

14
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Figure 3.1: Hierarchical tree (LMIL, 2005)

3.1.1 Hierarchical Clustering

Hierarchical clustering is a bottom-up technique that begins by assigning each gene

to an individual cluster. It continues by iteratively merging the most similar pairs

of clusters until all clusters are combined into one. The result is a hierarchical tree,

whose branch lengths represent the degree of similarity between genes or clusters

of genes. An example is shown in Figure 3.1. The final tree can be manipulated

to identify relationships among genes, for instance, the branches may be sorted

to place together gene clusters with similar expression patterns or cut to yield a

specific number of clusters for further inspection. Eisen et al. (1998) formed a hi-

erarchical tree of the genes of yeast. Their analysis indicated that genes clustered

together not only have similar expression levels but related functions, resulting in

the hypothesis that genes with similar expression profiles belong to the same path-

way. Similar observations have been made using other clustering methods includ-

ing Self-Organising Maps (Toronen et al., 1999), however hierarchical clustering

remains the preferred choice among molecular biologists.
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3.1.2 Significance of Clusters

Although clustering has generated groups of functionally related genes based purely

on expression profiles, assuming that genes within a clusters belong to the same

pathway is incorrect. This assumption is often described by the phrase Guilt by As-

sociation, (Quackenbush, 2003) which refers to several cases, where clusters can

incorrectly reflect the true relationship between genes, as follows:

1. Gene pathways commonly comprise of influencing genes with opposing ex-

pression levels. For example, a gene may be unexpressed to allow the ex-

pression of another. More precisely, the expression of a gene can repress the

expression of another.

2. It is possible for genes to have more than one function (which may still be

unknown) and thus appear in more than one pathway.

3. More than one gene pathway can be active at a time. Thus, genes from one

pathway may display similar expression profiles to genes in another, and be

placed in the same cluster.

Furthermore, generated clusters containing functionally related genes do not show

the relationship between the grouped genes. They do not reveal the underlying

reason for a gene’s observed expression profile, for example, genes A and B in one

cluster may belong to the same regulatory pathway, but it is not known if A affects

the expression of B, or vice-versa or neither.

3.2 Boolean Networks

Boolean Networks have been used to model the Boolean relationships present in

gene networks (Akutsu et al., 2003, 1999, 2000). A Boolean network G(V, F) con-

sists of a set of n nodes (V) corresponding to individual genes each of which has a

specific function from the set F of Boolean functions assigned to it. Each gene’s

expression level is simplified to two states: activated or in-activated.

The Boolean Network model requires microarray data to be in the form of a table,

consisting of Input and Output pairs corresponding to expression patterns of genes
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Input Time t-1 Output Time t

X Y Z X’ Y’ Z’

0 1 0 0 0 0

1 1 0 0 0 1

0 1 1 0 1 1

1 1 0 1 1 1

1 1 0 0 1 1

Table 3.1: Boolean expression table

at time t − 1 and t respectively for various experiments. It may also be applied

indirectly to Knockout data which first needs to be converted into an approximate

time series of Input and Output pairs (Akutsu et al., 2003). An example dataset is

shown in Table 3.1. This dataset is much smaller than one obtained from microar-

ray experiments.

Each Boolean function can receive input from up to K input nodes. That is a single

gene can only be influenced by up to K other genes. The binary state of a gene

node Vi at time t is determined by the current states of the K input nodes and the

corresponding Boolean function F , see Equation 3.1.

Vi(t) = Fi(Vi(t − 1), ...,Vk(t − 1)) (3.1)

For example, if gene Z is always expressed at time t when gene X and Y are ex-

pressed at time t − 1 then an AND function with input nodes X and Y will be

assigned to node Z. Now suppose that whenever gene W is on at time t− 2, gene X

is not on at time t − 1, then a NOT function with input W will be assigned to node

X. This simple Boolean Network is depicted in Figure 3.2.

This model assumes that the expression level of each gene is influenced by K genes.

This is a necessary simplification for Boolean Network construction algorithms.

This bound will result in important complex gene interactions remaining undis-

covered, as it is impossible to know the number of genes which influence a gene

prior to construction.
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Figure 3.2: Simple boolean network

The algorithm BOOL-1 of Akutsu et al. (1999) infers a Boolean Network from

temporal expression patterns. For each node, it exhaustively searches through each

set of K input nodes and all possible Boolean functions to identify a function with

K inputs, which satisfies all given expression patterns. Akutsu et al. (1999) prove

the algorithm is polynomial O(nK+1m), where n = total number of genes, K =

number of input genes for each gene, and m is the number of sample experiments

each function must satisfy.

As the number of genes studied in a single microarray experiment is commonly

in the thousands and the value of K for many genes is known to exceed four, the

algorithm is extremely inefficient for inferring large gene networks. In fact experi-

ments from Akutsu et al. (1999, 2000) and Liang et al. (1998) only increased K to

at most 4, for this reason. Further Liang et al. (1998) only applied their algorithm

to a subset of 50 genes where “the number of configurations becomes too large to

compute”.

The REVerse Engineering ALgorithm (REVEAL) (Liang et al., 1998) is similar to

the method described by Akutsu et al. (1999). However, it effectively determines

the minimum K for each node based on mutual information and entropy measure-

ments of the input combinations for each output, prior to network construction. The

final network corresponds to the minimum network possible and is constructed via

an exhaustive search for Boolean functions as in BOOL-1.

Networks generated by algorithms such as BOOL-1 and REVEAL are only capable

of modelling how a gene’s expression level at time t (output) is influenced by genes

at time t − 1 (input). They do not convey how gene profiles at time t − 1 are
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influenced. To do so, an entirely new network needs to be constructed with time

t − 1 as output.

The Boolean network model has many limitations, and as such many models in-

cluding Noisy (Akutsu et al., 2000), Probabilistic (Shmulevich et al., 2002) and

Temporal (Silvescu and Honavar, 2001) Boolean networks have been devised. Each

has the ability to increase the accuracy of modelling real gene regulatory networks,

and therefore improve the quality of data collected from microarray experiments.

However, the time complexity for inferring the networks increases significantly

and they are still limited in the number of genes and consecutive time points they

can use (Shmulevich et al., 2002; Silvescu and Honavar, 2001).

3.2.1 Noisy Boolean Networks

The standard Boolean model restricts the interactions of genes to that of strict log-

ical rules. The algorithm BOOL-2 (Akutsu et al., 2000) infers a Noisy Boolean

Network by incorporating boolean functions with inputs which are consistent with

at least a predetermined percentage of input/output patterns, whereas BOOL-1 re-

jects any function which is not consistent with all patterns.

3.2.2 Probabilistic Boolean Networks

Probabilistic Boolean Networks (PBN) remove the assumption that each gene has

only one logical rule (Shmulevich et al., 2002). PBNs deal with the uncertainty,

both in the data and the model selection by allowing multiple functions predicting

each genes expression level. Each node is assigned a set of functions that can

predict the expression profiles of the gene, with a certain level of probability.

3.2.3 Temporal Boolean Networks

Each Boolean model discussed so far has assumed that the state of K genes at the

previous time phase determines the expression pattern of a gene at a given time.
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They are therefore unable to model latency periods between a gene’s activation (in-

activation) and its observed effect. This is biologically important, as the regulation

of many genes requires the expression of more than one gene that can be expressed

at different times, in which case the effect is not observed until the later gene is

expressed.

Silvescu and Honavar (2001) introduced a Temporal Boolean Network (TBN) mod-

el to represent how the expression levels of other genes during preceding time steps

can influence the expression of a gene. In a TBN the state of a gene at time t can

depend on the states of genes at times t − 1, t − 2, ..., t − (t − n), compared to

the standard model where they only depend on the states at time t − 1. TBNs are

still unable to reflect complete gene pathways. They only show how input genes

regulate genes at time t, not how the input genes are regulated or what genes the

output genes regulate. However, they do provide significantly more detail then the

standard Boolean network.

3.3 Bayesian Networks

Recently Bayesian networks (Pearl, 1988) have been considered to graphically

represent the probabilistic relationships between multiple genes in non-temporal

microarray experiments (Friedman et al., 2000, 1999). Bayesian networks are di-

rected acyclic graphs G(V, E) whose vertices V correspond to random variables

(genes) and edges E represent the direct dependencies between the variables. The

graph G embeds the conditional in-dependencies and dependencies between the

variables, and represents the joint probability distribution of all the variables.

Algorithms to identify Bayesian networks aim to maximise statistically motivated

scoring functions such as the Bayesian score, which evaluates a given networks

ability to portray the data. Searching for the optimal Bayesian network is NP-hard,

and therefore heuristic searches and dynamic programming algorithms have been

devised to deduce the most likely network.

An attractive property of Bayesian networks is that they are able to model addi-

tional attributes, which affect a biological system other than the expression lev-
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els. That is, they have the capacity to combine heterogeneous datasets such as

epidemiology data. Therefore they have the potential to produce expert systems

for diagnostic applications (Baldi, 2002). Unfortunately, this is not appropriate

for predicting gene networks from microarray data as additional prior knowledge

is likely to lead to a bias towards a specific graph, leaving unknown interactions

undiscovered. Furthermore, Bayesian networks are best applied to a small number

of variables, thus they suffer from the same input limiting restrictions as Boolean

networks.

3.4 Summary

A wide variety of microarray analysis methods have been proposed to infer gene

networks. The main techniques, Boolean and Bayesian networks, have the follow-

ing weaknesses:

1. Only a small percentage of genes can be included in the network discovery

process

2. Unable to model genes relationships over more than one consecutive time

frames

These input restrictions are required to simplify the computation of the networks.

As a result the generated networks will not provide the wealth of knowledge em-

bedded in the microarray experiments. As biologists desire the entire microarray to

be analysed, they rarely apply Boolean or Bayesian approaches. They continue to

apply clustering methods to unveil the gene relationships. These issues with exist-

ing methods signal the need for an efficient approach that can be applied globally

to microarray data to extract gene networks.
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Association Rule Mining

Association rules describe relationships between binary attributes extracted from

datasets. Association rule mining was originally motivated by a desire to examine

the behaviour of customers in terms of the products they purchase together. Min-

ing algorithms have the potential to extract interesting patterns from microarray

expression data, which may aid in the identification of gene networks where the

expression of a gene can depend on the expression of others:

Gene1⇒ Gene2 (support 10%, confidence 90%)

The above rule states that when Gene1 is expressed 90% of the time Gene2 is also

expressed, and Gene1 and Gene2 are expressed together in 10% of the experiments.

This chapter provides a detailed introduction to the frequent itemset and association

rule mining problems. Common definitions and algorithms used to mine rules are

also introduced, which lay a foundation for the research presented in this thesis.

4.1 Frequent Itemsets and Association Rules

The problem of mining frequent itemsets and association rules is best described in

terms of identifying relationships that describe the purchasing patterns of shoppers.

Given all the items that a store sells, the set of transactions corresponds to each in-

dividual group of items that are bought together in a single purchase. From these

22
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items and transactions the aim is to find the sets of items that appear frequently

together in the transactions known as frequent itemsets. From these itemsets, we

would like to find association rules which describe purchasing patterns in the form

of buying item1 ⇒ item2 and item3 are also purchased. When applying associa-

tion rule mining to microarray data, the set of items is the set of genes studied on

the microarray, and each individual experiment is a single transaction. We treat

each gene as two separate items - one for the gene being up-regulated and one for

the gene being down-regulated therefore within a single transaction only one item

for a given gene can be present.

Frequent itemset and association rule mining is formulated as follows:

Let the dataset D = {t1, t2, ...tn} be a set of n transactions. Let I = {i1, i2, ...im} be

the set of all possible items (m). Each transaction t, consists of a set of items I

from I. The aim is to mine all association rules describing relationships between

the items based on the transactions in D.

Association rule mining is commonly split into two tasks:

1. Identify all frequent itemsets that satisfy a user defined threshold such as

support.

2. Generate all association rules from the frequent itemsets that satisfy a confi-

dence threshold.

Definition 1 (Support) Let X ⊆ I be a set of items from D. The support of the

itemset X in D is the proportion of transactions that contain X:

support(X) =
# of transactions containingX

n
(4.1)

Definition 2 (Frequent Itemsets) The itemset X is frequent if the support of X in

D is at least the support threshold (minsup). The set F of frequent itemsets in D

is:

F = {X ⊆ I | support(X) ≥ minsup} (4.2)
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Definition 3 (Association Rule) An association rule is an implication between item-

sets of the form I1 ⇒ I2 where I1, I2 ⊂ I and I1 ∩ I2 = ∅

Definition 4 (Antecedent of a Rule) Given an association rule I1 ⇒ I2, the an-

tecedent of the rule is the set I1.

Definition 5 (Support of a Rule) The support of the rule I1 ⇒ I2 is:

support(I1 ∪ I2) (4.3)

Definition 6 (Confidence of a Rule) The confidence of a rule I1 ⇒ I2 refers to

the strength of the association defined as the ratio:

support(I1 ∪ I2)
support(I1)

(4.4)

For example, suppose the itemsets {A}, {B} and {A, B} occur is 2, 3 and 2 transac-

tions respectively, and there are a total of 10 transactions. Then the support count

of each is 2
10 , 3

10 and 2
10 respectively. The confidence of the rule A ⇒ B is 2/10

3/10 .

4.2 Itemset Mining - step 1

Algorithms to mine association rules typically search for all frequent itemsets and

then from these identify association rules. The problem of mining all frequent

itemsets is computationally challenging. The main property causing difficulty is

that the search space is exponential with respect to the number of unique items

within a dataset. Methods incorporating the support threshold into the discovery

process often limit this space to a more feasible size. Further the number of item-

sets identified can be reduced by neglecting redundant itemsets. Both these aspects

will be discussed in further detail in this section.

4.2.1 Search Space

In each dataset there contains exactly 2|I| different itemsets which may be checked

during the search for frequent itemsets. When the number of items in a dataset

is large a naı̈ve approach of generating and counting the supports for all possible

itemsets is unreasonable with respect to time and memory requirements.
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Definition 7 (Candidate Itemset) Given an algorithm that computes the frequent

itemsets F from a dataset D, an itemset X is a candidate itemset if the algorithm

considers whether X is frequent or not.

For most applications the naı̈ve approach will result in the number of candidate

itemsets exceeding the amount of memory available, unless a method for reduc-

ing these is considered. Agrawal et al. (1993) presented the Support Monotonicity

property that is now exploited by many algorithms to reduce the search space.

Definition 8 (Support Monotonicity (Agrawal et al., 1993)) Given a transaction

dataset with items I, let I1 and I2 be two itemsets such that I1, I2 ⊆ I, then

I1 ⊆ I2 ⇒ support(I1) ≥ support(I2) (4.5)

Therefore, if a candidate itemset is frequent all its subsets must also be frequent.

Conversly if an itemset is infrequent, all its supersets will also be infrequent and

thus there is no need for them to be considered as candidate itemsets.

4.2.2 Closed Itemsets

In the generation of frequent itemsets, many itemsets are often redundant in that

they provide the same information as another itemset. For instance if the itemsets:

{gene1, gene2}

{gene1, gene2, gene3}

exhibit identical support, the first itemset is considered redundant since the infor-

mation it provides is contained within the second itemset. In this case the second

itemset is a Closed Itemset.

Definition 9 (Closed Itemset) The candidate itemset I1 is a closed itemset if there

does not exists an itemset I2 such that:

1. I1 1 I2

2. support(I1) , support(I2)

Definition 10 (Frequent Closed Itemset) The itemset I1 is a frequent closed item-

set if:
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1. support(I1) ≥ minsup

2. I1 is a closed itemset

Since there can be millions of frequent itemsets extracted from a single database,

having a method to reduce these without a loss of information is important (Pasquier et al.,

1999). Therefore, if a mining algorithm can restrict the search to closed itemsets,

by only ever considering these, the search space may be reduced significantly.

4.3 Frequent Itemset Algorithms

The frequent itemset mining problem has received a great deal of attention since

its introduction by Agrawal et al. (1993). Many new methods have since been pub-

lished, however for the purpose of background to the methods this thesis intro-

duces, we will discuss the popular Apriori (Agrawal et al., 1993) algorithm and

the recent Row Enumeration approach (Cong et al., 2004) designed specifically to

mine frequent closed itemsets. The dataset in Table 4.1(a) will be used for ex-

amples in the remainder of this chapter. Table 4.1(b) provides the single itemset

counts from the transactions in Table 4.1(a).

Transaction Items

1 B D E F

2 A C E F

3 A C D E

4 A B C E G

5 A B C D E F

6 B C G

7 D E

(a) Example transactions

Item Support

A 4

B 4

C 5

D 4

E 6

F 3

G 2

(b) Single itemset supports

Table 4.1: Example dataset
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4.3.1 The Apriori Algorithm

The first phase of the Apriori algorithm (Algorithm alg:apriori) mines all frequent

itemsets given a support threshold. The basic approach of this algorithm can be

described as searching the item enumeration space. Item enumeration refers to the

systematic testing of combinations of itemsets, starting from single itemsets and

iteratively extending these with one item by combining them with other itemsets.

This is referred to as a bottom-up technique since it starts with the smallest possible

itemsets and builds up to longer ones. An example of Apriori performed on the data

in Table 4.1 is shown in Figure 4.1.

The Apriori algorithm begins by identifying the single itemsets which have a sup-

port greater than or equal to the support threshold. From these frequent itemsets

(F1), candidate itemsets of length 2 (C2) are generated (Figure 4.1(b)). The algo-

rithm iteratively continues in a breadth-first manner, generating candidate itemsets

Ck+1 of size k+1, from the frequent itemsets Fk. Candidates of size k+1 (Ck+1) are

formed by taking the union X ∪ Y of itemsets X,Y ∈ Fk if they differ only by one

item. For example in Figure 4.1(c) the itemsets AC and AE each with support count

4, are combined to form the candidate itemset ACE. Here the support monotonicity

property is exploited where any candidate itemset that has a subset which is infre-

quent is removed from the candidate set, as any extension of an infrequent itemset

is guaranteed to be infrequent and thus does not need to be checked. In the case of

ACE, all of its subsets are supported and thus it becomes a candidate itemset. If for

instance the itemset CE was not frequent, then ACE would be pruned.

The support of each remaining candidate itemset is then calculated by scanning the

transaction database one transaction at a time for each itemset. For each transaction

the itemset appears in its support is incremented (Algorithm 1, lines 7-8). All

candidates Ck which are frequent are then stored into Fk (Algorithm 1, line 10).

Apriori then continues searching until no further candidates are generated. After

all frequent itemsets are identified, association rules are produced which satisfy the

confidence threshold from these itemsets.
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(a) Iteration K = 1

(b) Iteration K = 2

(c) Iteration K = 3

Figure 4.1: Apriori algorithm example (Min Support = 2)

4.3.1.1 Application to Microarray Data

Creighton and Hanash (2003) applied Apriori rule mining to the expression profiles

of 6316 genes (where each gene was represented by two items - up-regulated or

down-regulated) corresponding to 300 diverse mutation experiments (transactions)

of yeast. Many of the rules generated were consistent with biological knowledge,

and other rules revealed numerous unexpected relationships that warranted further

biological investigation. Furthermore, genes with previously unknown function

were associated with genes of known function, and thus a hypothesis of func-

tion was inferred. The associations generated revealed correlations between many

genes that were not identified from clustering methods. However their analysis

was only applied to 47 rules consisting of at least 11 items, with minimum sup-

port 10% and confidence 80% that they discovered (Creighton and Hanash, 2003).

Creighton and Hanash (2003) were unable to lower the support threshold below
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Algorithm 1 Apriori - itemset mining

Input: Database D and min support

Assume: Items in transactions and itemsets are sorted.

Output: All frequent itemsets F

1: C1 := {{i}|i ∈ I}

2: k := 1

3: while Ck , ∅ do

4: // Compute the supports of all candidate itemsets

5: for all transactions t ∈ D do

6: for all candidate itemsets X ∈ Ck do

7: if X ⊆ t then

8: X.support := X.support + 1

9: // Extract all frequent itemsets

10: Fk := {X|X.support ≥ min support}

11: F .append(Fk)

12: // Generate new candidate itemsets

13: Ck+1 := getCandidates(k + 1)

14: k := k + 1

10% due to memory requirements.

The generation of significant associations presents the possibility of inferring gene

networks from association rules. However as this work demonstrates, Apriori style

algorithms, along with support pruning are not appropriate for predicting gene net-

works.

4.3.2 Row Enumeration

4.3.2.1 Motivation

The Apriori algorithm is very efficient when applied to sparse datasets. A dataset

is considered sparse when each individual item appears in a small percentage of
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transactions, where the number of transactions is large (often in the thousands),

and each transaction has very few items. In such a dataset the number of frequent

itemsets will be low, even when the support threshold is set relatively low.

Despite Creighton and Hanash (2003) showing the usefulness of applying associ-

ation rules to microarray data, their experiments revealed the computational issues

of algorithms based on item enumeration like Apriori with such data. The follow-

ing properties hinder the subsequent iterations of Apriori dramatically with respect

to time and space:

1. Dense datasets

High dimensional microarray datasets impair the tractability of Apriori style

algorithms. Compared to traditional datasets mined using Apriori algorithms,

microarray datasets contain far fewer transactions (≤ 300 experiments) with

each transaction on average consisting of thousands of items. If we consider

d to be the maximum number of items in a transaction, then there can be at

most 2d candidates in the item enumeration search space. With d often ex-

ceeding 1000, infeasible computational methods would be required to handle

these candidates.

2. Long itemsets

With few transactions and many items, very few items will be deemed in-

frequent in the first pass (and often many more) unless the support is set to

a much higher value which is undesirable. Furthermore, as the expression

of many genes are known to be correlated many candidate itemsets of size

≥ 2 are also highly likely to be frequent. As Apriori needs one scan of the

database for each item set length to calculate support, long item sets can

cause prohibitively long delays.

4.3.2.2 RERII

Both Rioult et al. (2003) and Pan et al. (2003) showed that by searching the row

enumeration space, the complete set of frequent closed itemsets can be obtained.

Compared to item enumeration methods like Apriori, row enumeration is a top-
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down approach starting with each transaction being a candidate itemset and iter-

atively removing items to form smaller candidates of greater support. Cong et al.

(2004) presented RERII, an efficient row enumeration based algorithm given in

Algorithm 2 and 3, best suited to datasets where the number of items greatly out-

weighs the number of transactions.

RERII constructs a row enumeration tree shown in Figures 4.2, 4.3 and 4.4 in a

depth first manner from the dataset in Table 4.1(a), which appear at the end of this

chapter.

The algorithm begins by removing all infrequent single items from the transactions

and then initialises a set of parent nodes each corresponding to one of the n new

transactions with a support count of 1 (Algorithm 2, lines 1-5).

From these parent nodes, candidate subsets (child nodes) of greater support are

generated (Algorithm 3, lines 13-19) by taking the intersection between each pair

of parent itemsets. If an intersection exists, four scenarios are possible:

Let ni and n j be two sibling nodes, where ni is to the left of n j.

1. If ni.item = n j.item, n j is integrated into ni by removing n j and incrementing

the support of ni and any of ni’s child nodes.

2. If ni.items ⊂ n j.items, the support of ni and any of its child nodes is incre-

mented.

3. If ni.items ⊃ n j.items, n j will be pruned and the intersection between ni

and n j will become a child of ni with incremented support if it has not been

discovered as a frequent itemset in a previous step.

4. If ni.items , n j.items, the intersection between ni and n j will become a child

of ni with incremented support if it has not been discovered as a frequent

itemset in a previous step.

After each parent’s child nodes are derived the algorithm recurses depth first until

no candidate subsets (child nodes) can be formed. At any point if a nodes support

exceeds the support threshold it is stored as a frequent closed itemset (Algorithm

2, lines 17-19).



Chapter 4. Association Rule Mining 32

# Itemset Support Apriori RERII

1 A C 4 Yes Yes

2 A E 4 Yes No

3 B C 3 Yes Yes

4 B E 3 Yes Yes

5 C E 4 Yes No

6 D E 4 Yes Yes

7 E F 3 Yes Yes

8 A C E 4 Yes Yes

Table 4.2: Frequent (Closed) Itemsets derived using Apriori and RERII

from Table 4.1(a) with support ≥ 3

During RERII the support of the parent node under consideration is incremented

directly from the nodes it is intersected with (Algorithm 3, lines 2-10), thus elim-

inating the need to access the database for itemset counting. RERII never applies

any property of the support monotonicity, although Cong et al. (2004) stated all

their pruning is based on support. The pruning in RERII is best described as closed

pruning, in that it removes all itemsets which are closed by another.

The only point where support is considered is on Line 10 (Algorithm 2), where

if it is impossible for a node’s support to increase above that of the threshold it

is removed. This is the case for node ABCDEF in Figure 4.2. As it cannot be

intersected with any other nodes, its support can not exceed 1.

Cong et al. (2004) applied RERII to real microarray data. However, their analysis

only involved performance studies with respect to time and space requirements

compared to state of the art Apriori style methods, CHARM (Zaki and Hsiao, 2002)

and CLOSET (Pei et al., 2000). As the support was decreased, CHARM failed due

to using all available memory and CLOSET was found to be too slow, whereas

RERII performed superior to both.

Table 4.2 highlights the main difference in mining closed patterns with RERII com-

pared to mining all frequent itemsets with Apriori. RERII does not consider the

itemsets AE or CE as they are already discovered in the closed itemset ACE. Note

that Apriori style algorithms are not capable of mining closed patterns without

having to generate all frequent itemsets individually first.
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Algorithm 2 RERII - closed itemset mining - Part 1

Input: Min support, Dataset D

1: for all transactions t ∈ D do

2: Remove all infrequent items from t

3: N := ∅

4: n := new Node(items = t.items, support = 1)

5: N.append(n)

6: FCP := ∅

7: RERII depthfirst(N, FCP)

8: Procedure: RERII depthfirst(N, FCP)

9: for all node ni in N do

10: Children := ∅

11: if ni cannot be frequent then

12: return

13: for all node n j in N where n j > ni do

14: i := ni.items ∩ n j.items

15: if |i| > 1 then

16: RERII pruning(ni , n j)

17: if ni.support ≥ min support then

18: FCP.append(ni)

19: Disc.append(ni .items)

20: if Children , ∅ then

21: call RERII depthfirst(Children, FCP)

4.4 Summary

This chapter provided a detailed introduction to the frequent itemset and associa-

tion rule mining tasks. The relationships association rules describe are shown to be

useful for interpreting microarray data. Despite this, the popular Apriori algorithm

is shown to be insufficient for mining dense datasets and thus microarrays. This

chapter introduced a new family of top-down association rule mining algorithms

which were specifically designed to facilitate the mining of dense datasets.
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Algorithm 3 RERII - closed itemset mining - Part 2

1: Procedure: RERII Pruning(ni, n j)

2: if ni.items = n j.items then

3: delete n j

4: ni.support++

5: for all c in Children do

6: c.support++

7: if ni.items ⊂ n j.items then

8: ni.support++

9: for all c in Children do

10: c.support++

11: if ni.items ⊃ n j.items then

12: delete n j

13: if ni.items ∪i not discovered before then

14: c := new Node(items = i.items, support=ni .support + 1)

15: Children.append(c)

16: if ni.items , n j.items then

17: if ni.items ∪i not discovered before then

18: c := new Node(items = i.items, support=ni .support + 1)

19: Children.append(c)
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Figure 4.2: RERII algorithm example - Part 1 (Min Support ≥ 3)
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Figure 4.3: RERII algorithm example - Part 2 (Min Support ≥ 3)
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Figure 4.4: RERII algorithm example - Part 3(Min Support ≥ 3)



Chapter 5

Advances for Gene Networks

from Knockout data

We identified two properties of association rule mining algorithms which are not

ideal for predicting gene networks.

1. Many rules that a biologist would consider of high interest are pruned, leav-

ing them undiscovered.

2. The enormous number of rules generated hinder a biologists ability to inter-

pret the results.

In this Chapter we address these two short-comings of association rule mining with

a strong emphasis on computational effectiveness, proposing a top-down algorithm

without support pruning, to mine maximal confidence rules.

5.1 Bottom-up High Confidence Rule Mining

The support based techniques introduced in Chapter 4 deem infrequent itemsets

uninteresting, resulting in them being pruned during frequent itemset generation

(step 1). Therefore in the following iteration, only a subset of confident rules will

be mined. However, it is often the high confidence rules that occur with low fre-

quency which present interesting characteristics within the dataset.

38
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The Maximal Participation Index (maxPI) was introduced in Huang et al. (2003) to

mine co-location patterns from spatial datasets. It excludes the support threshold

from the search, allowing all confident rules to be identified.

Definition 11 (Maximal Participation Index) Given an itemset I the maximal par-

ticipation index of I is defined as the maximal participation ratio (pr) of all items

i ∈ I.

maxPI(I) = max i∈I{ pr(I, i) } where

pr(I, i) = con f idence(i ⇒ (I/i))

=
support(I)
support(i)

From Definition 11 it is clear that the MAXPI of an itemset is the maximum con-

fidence a generated rule can have. If the MAXPI of an itemset is below the confi-

dence threshold it cannot generate any confident rules. Unlike support, MAXPI is

not monotonic with respect to itemset containment relations. That is:

Given itemsets I1 and I2 such that I1 ⊂ I2 we are not guareenteed that
MAXPI(I1) ≥ maxPI(I2)

However, MAXPI does exhibit a weak monotonic property (Definition 12). It is

possible to applying this weak monotonic property to an Apriori style algorithm to

mine confident itemsets. Based on this property, if a k-itemset is MAXPI frequent,

then at most one of its subsets with (k-1) items is not confident.

Definition 12 (maxPI weak monotonicity) Let I1 be a k-itemset. Then there ex-

ists at most one (k-1) subsets I2 where I2 ⊂ I1 such that MAXPI(I2) < maxPI(I1).

One drawback of using MAXPI is that no single itemsets can be pruned in the

first phase of Apriori as they all have a confidence of 100%. Therefore Apriori-

maxPI algorithms must deal with all the singleton candidate itemsets and the |I|2

2-itemsets. It is not until 3-itemset candidates are generated that pruning can be

applied. Based on support alone, if any (k-1)-itemset of a k-itemset is not frequent,

then the k-itemset can not be frequent, and thus can be pruned without a need to

do support counting. With respect to MAXPI, a k-itemset is only guaranteed to not
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be MAXPI frequent (maxPI ≥minimum confidence) if more than k-2 (k-1)-subsets

are not. Therefore MAXPI pruning is not as stringent as that using support.

This property works against Apriori, which works efficiently on the assumption

that the number of frequent itemsets is low, as stated in Chapter 4. Further with a

large number of items in microarray data, Apriori MAXPI approaches suffer from

itemset explosion.

Unfortunately there is no property of MAXPI that can be exploited by a top-down

approach, without potentially losing confident rules. Motivated by this issue, we

have identified a property of confidence that can be exploited by a top-down algo-

rithm. This is described in the following section.

5.2 MAXCONF

The main challenge in devising a top-down algorithm for mining high confident

rules is that no support pruning can take place. A naı̈ve approach in a top-down

manner would be to grow the entire row-enumeration tree until no itemsets can

be generated. This would be equivalent to generating all closed itemsets (includ-

ing those that are not frequent with respect to support). From these all confident

rules may be generated. Concerning microarrays (and other dense datasets), the

set of closed itemsets is already extremely large, many of which cannot gener-

ate confident rules and as such the naı̈ve approach requires unnecessary expensive

computations and memory. We applied this naı̈ve approach, which reported an

error after using up all available memory, when only 30% of the transactions had

been processed.

In this section we introduce our top-down approach to mining maximal confident

rules efficiently. Our algorithm MAXCONF (Algorithm 4) addresses the two main

short-comings of association rule mining. MAXCONF exploits two pruning meth-

ods each based on confidence allowing us to prune the row-enumeration tree with-

out losing any rules. It is further enhanced to only mine all maximal confidence

rules. Each of these methods are explained in the following sections.
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5.2.1 Level 1 Confidence Pruning

This pruning is based on an observation of the structure of the row-enumeration

tree. At any point in the row-enumeration tree we can predict the maximum sup-

port and confidence an itemset can exhibit, based on its location within the tree.

From this property our first pruning technique is possible, which is detailed in the

following definitions.

Definition 13 (Maximum Support) Given a node N with k child nodes, N1, ... ,Nk,

for any child node Ni the maximum support of Ni or any of its potential child nodes

is:

maximum support = Ni.initial support + k − i (5.1)

Definition 14 (Minimum Feature) Given an itemset I, the item i1 ∈ I is the mini-

mum feature if:

minimum feature = support(i1) ≤ support(i2) | ∀i2 ∈ I (5.2)

Definition 15 (Spanning Rule) Given an itemset I, a rule r spans I if

Antecendent(r) ∪ Consequent(r) = I (5.3)

|Antecendent(r)| = 1 (5.4)

Definition 16 (Maximum Confidence) Given a node N, let σ be the maximum

support of N and i be the minimum feature of N. The maximum confidence of any

spanning rule of N is:

maximum confidence =
σ

support(i)
(5.5)

(5.6)

If we know that the maximum confidence of a node’s itemset is less than the confi-

dence threshold, it can be pruned, as any further enumeration below the node will

only generate less or equally confident child itemsets. This pruning is performed

on line 11 of Algorithm 4.
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5.2.2 Level 2 Confidence Pruning

We identified the weak downward closure property of the confidence measure,

which we can exploit during the enumeration tree generation process, to effectively

prune nodes which will provide no new information. This pruning is performed on

lines 19-21 of Algorithm 4 and is based on the following definitions:

Definition 17 (Max Features) Given an itemset I, let RI be the set of all confident

rules {x ⇒ y } where x ∪ y = I and |x| = 1. The set of max features MI is

Antecedent(RI ).

Lemma 1 (Confidence weak downward closed) Let MI be the set of max fea-

tures derived from I. Then any subset of I which contains an element of M will

have a confident rule whose confidence is lower bounded by all rules in R I .

Proof 1 Let i1 ∈ I1 ∩ MI. Let r be a rule from I1 such that Antecedent(r) = i1

then the rule i1 ⇒ I1 ∩ Consequent(r) is a confident rule because:

support( (I1 ∩ consequent(r) ) ∪ i1)
support(i1)

>
support(consequent(r) ∪ i1)

support(i1)
(5.7)

Definition 18 (Sub-rules) Given an itemset I, let RI be the set of all rules {x⇒ y }

where x ∪ y = I. The set of sub-rules S RI is the set of all rules generated from the

itemset I2 such that:

I ⊂ I2

For each sr ∈ S RI:

antecedent(sr) ∈ antecedent(RI )

Confidence(sr) ≥ Confidence(R)

For example, the rule A ⇒ B (confidence 90%) is a sub-rule of A ⇒ B,C,D

(confidence 80%).

By extension of Lemma 1, if the set of max features M of a node N is not empty,

we can prune all child nodes of N whose itemsets are subsets of M, as we are

guaranteed that such a child will only produce sub-rules of the rules generated by

N.



Chapter 5. Advances for Gene Networks from Knockout data 43

5.2.3 Maximal Confident Rules

So far our approach has focused on the first issue of association rule mining -

the need to identify high confidence rules. We now present another property of

confident rules which can be exploited to reduce the number of rules generated,

without any information loss - addressing the second issue.

If the set of confident rules can be restricted to that of Maximal Confident Rules

(Definition 20), the number of rules can be significantly reduced. This approach

can only be performed in a top-down algorithm as it exploits the way in which

child nodes are constructed.

Definition 19 (Super-rules) Given an itemset I, let RI be the set of all rules {x⇒

y} where x ∪ y = I. The set of super-rules S upRI is the set of all rules generated

from the itemset I2 such that:

I2 ⊂ I1

For each r ∈ S upRI2:

Antecedent(r) ∈ Antecedent(RI )

Confidence(r) ≤ Confidence(R)

S RI2 = ∅

For example, the rule A ⇒ B,C (90% confidence) is a super-rule of A ⇒ B

(100% confidence). However if the rule A ⇒ B,C,D (80% confidence) exists then

A⇒ B,C is not a super-rule.

Definition 20 (Maximal Confident Rules) LetR be the set of confident rules from

a dataset D. The setMR of maximal confident rules is the set of confident rules

whose super-rules are not confident.

For example if the rule A⇒ B,C,D is not confident, but the rule A⇒ B,D is, then

the second rule is a maximal confident rule.

During MAXCONF, the first node N down a path which has a max feature set M

of cardinality > 1 generates the maximal confident rules R. Let CM be all child

nodes of N with itemsets i such that i ⊂ M. Each child node c ∈ CM will generate a
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Transaction Items

1 A B C D E G

2 A C D E G

3 C D E F G H I

4 B C D E G

5 A C E G I

6 A D I

7 D I J

8 A B C D G

Table 5.1: Example transaction set

confident rule (not maximal) which is lower bounded by the confidence of R (from

Lemma 1). At this point MAXCONF outputs the confident rules of N (Algorithm 4,

line 18), performs any child pruning (Algorithm 4, lines 19-21), and then continues

in a depth first manner. If there remains any child nodes c ∈ CM after pruning, all

items from M are not considered for rule generation from c (Algorithm 4, lines 23-

24 and 11). Such rules are contained within R, and thus can be ignored. Following

this procedure, only Maximal Confident Rules will ever be generated.

5.3 MaxConf Example

The complete row enumeration tree for the dataset in Table 5.1 is shown in Figure

5.1. Incorporating the standard closure pruning of RERII, the tree in Figure 5.2

is formed. Suppose confidence = 2/3. Confidence Level 1 pruning will occur on

Nodes AI, ADI and ACDG. For example, the support of the itemset ADI needs

to be > 2.6 for this node to form any confident rules, as the minimum feature I

has a support of 4. Level 2 pruning occurs on node CEG. The parent node of

CEG (CDEG) forms 3 confident rules generating the maximal feature set M =

{CEG}. Therefore we know CEG will be confident as with any child nodes it may

generate, and thus it can be pruned, in which case the node CG will not be created.

Now suppose the support threshold = 3 with RERII, no rules from nodes CEGI,

DI, BCDEG, DIJ, ACDEG, BCDEG or ABCDG would be generated based on
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MAXCONF Rules Confidence Support RERII Found

C⇒ DEG 4/6 4 Y

E⇒ CDG 4/5 4 Y

G⇒ CDE 4/4 4 Y

A⇒ CG 4/5 4 Y

C⇒ AG 4/6 4 Y

G⇒ AC 4/6 4 Y

A⇒ D 4/5 4 Y

B⇒ CDEG 2/3 2 N

B⇒ CDG 3/3 3 N

I⇒ D 3/4 3 N

J⇒ DI 1/1 1 N

F⇒ CDEGHI 1/1 1 N

H⇒ CDEFGI 1/1 1 N

Table 5.2: Rules identified by MAXCONF and RERII

support alone. Furthermore the single itemsets B, F, H and I would be immediately

pruned in the first pass (unsupported). Figure 5.3 shows the MAXCONF tree with

closure and confidence pruning and Table 5.2 shows the various rules identified

by MAXCONF that can and cannot be identified using RERII with a support of 3.

Note due to confiden ce pruning, MAXCONF will not identify the rule C ⇒ EG.

However this information is contained within the first rule in Table 5.2.

5.4 MAXCONF Evaluation

In this section we concentrate on the general effectiveness of our algorithm com-

pared to previous methods. We demonstrate the importance of pruning without

support with respect to performance and the biological significance of the rules

generated.
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Figure 5.1: MAXCONF tree - no pruning
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Figure 5.2: MAXCONF tree - closure pruning
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Figure 5.3: MAXCONF tree - confidence pruning

5.4.1 Computational Effectiveness

The main down fall of RERII is its inability to extract many possible association

rules that meet the confidence threshold due to its support pruning. Indeed with

the Hughes Compendium (Hughes et al., 2000) where 8678 items are considered

within 300 transactions, 96.5% of the single items are pruned in the first stage with

a high support of 10%, leaving only 301 items to be considered to form frequent

itemsets and then confident rules. Without any support cut-off necessary MAX-

CONF mines rules considering all 8678 items, and as such is capable of detecting

many more rules with high confidence. Furthermore we compared the effective-

ness of mining only maximal confident rules to mining all high confident rules.

As expected with a lower confidence threshold, fewer rules are generated as more

maximal rules are identified. These results are summarised in Table 5.3.

A more detailed comparison of support and confidence pruning is shown Figure

5.5. This graph clearly highlights the drastic effects of support pruning on rule

generation. When the support of RERII is lowered to zero (in an attempt to find

all confident rules), no rules were ever generated as the program required too much

memory.

The difference in the number of rules generated with and without the maximal
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rule restriction is only moderate (Table 5.3), with only a 11% reduction with 85%

confidence. The amount of reduction (as with any pruning) is bounded by the

characteristics of the dataset.

Table 5.4 further accentuates the significant improvement of MAXCONF over RERII

by identifying high confidence rules with a much larger support range, with a very

low minimum.

Confidence (%)
# Rules

RERIIa MAXCONFb MAXCONFc

80 8083 21448 19090

85 3161 13181 12424

90 927 8445 8296

95 277 7229 7214

100 65 7067 7067

aSupport 5%
bNo maximal restriction
cMaximal restriction

Table 5.3: Effect of confidence pruning for rule extraction

Confidence (%)
Support Range

RERIIa MAXCONFb MAXCONFc

80 5 - 30.4 0.3 - 30.4 0.3 - 30.4

85 5 - 30 0.3 - 30 0.3 - 30

90 5 - 25 0.3 - 25 0.3 - 25

95 5 - 25 0.3 - 25 0.3 - 25

100 5 - 17 0.3 - 17 0.3 - 17

aSupport 5%
bNo maximal restriction
cMaximal restriction

Table 5.4: Range of rule supports

Figure 5.4 shows the scalability ofRERII and MAXCONF algorithms with respect

to confidence, support and maximal rule mining. Intuitively with support pruning

the higher the support is set, more pruning is possible and thus the run time is
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decreased.

Surprisingly there was a significant improvement in run time with MAXCONF both

with and without the maximal restriction over RERII. This was unexpected as

previous approaches to pruning with confidence such as the MAXPI algorithm are

often less efficient than their support based alternative.

The improvement is likely to be due to the nature of Level 2 pruning. In RERII,

to generate rules satisfying confidence the complete path from the top nodes to the

bottom need to be constructed, regardless of whether a nodes itemset is supported

or not. However in MAXCONF, when a node satisfies Level 2 pruning, all child

nodes are pruned and thus it is impossible for the tree to extend any further. This

is indeed significantly advantageous in this case.

As expected, imposing the maximal restriction on MAXCONF slightly increases

run time, due to the extra checking required. However this approach is still more

efficient than RERII.

5.4.2 Biological Rule Evaluation

In this section we focus on estimating the biological relevance of the rules we iden-

tify. Firstly we concentrate on how effective our approach is in detecting known

direct biological interactions.

Secondly we show that many of our rules contain relationships between the genes

they contain, which are not direct interactions. In each analysis we give a few ex-

amples of rules we identify, and how they relate biologically. Finally we consider

the iron uptake pathway in yeast, presenting some of the rules identified by MAX-

CONF that correctly describe gene relationships in this system. For consistency, all

further analysis of RERII involves the rules extracted with a minimum support of

5%.
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5.4.3 BIND

The Biomolecular Interaction Network Database (BIND) (C Alfarano et.al., 2005)

is an online database that archives pairwise information about direct1 interactions

which can occur between two biological entities, including proteins, RNA, DNA,

and genes. All interactions documented are experimentally determined using tra-

ditional wet-lab experiments, with the minimum amount of information required

to define an interaction being a PubMed publication.

5.4.3.1 Direct Interactions

To verify our method’s ability to extract meaningful biological results and its ap-

plicability to gene networks, we determined how many rules exhibit direct interac-

tions between at least two of their items i.e. precision (Definition 21). The intuition

behind this analysis is based on the observation that it is highly probable that for

a direct interaction between two or more gene products (proteins) to occur, the ex-

pression of the genes are correlated, and hence will be present together in at least

one rule.

Further we analysed the effectiveness of our approach to identify all possible inter-

actions from the dataset, i.e. recall (Definition 22). In total, among all the genes in

the microarray data, there are 1354 possible unique direct interactions that can be

extracted given the experimental conditions of the microarrays we analyse. These

results are summarised in Table 5.5 and clearly show the effectiveness of MAX-

CONF over support based mining methods. The extremely high recall (94%) is

superior compared to that obtained using RERII (0.15%).

Definition 21 (Precision) Let R be the set of rules identified by a mining algo-

rithm. Let B be the set of pairwise direct interactions in the microarray dataset, in

the form of rules. The percentage of rules which contain a direct interaction is:

# rules in R ∩ B
# rules in R

(5.8)

1a direct interaction refers to when two biological entities must physically bind together to allow

some function
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Definition 22 (Recall) Let R be the set of rules identified by a mining algorithm.

Let B be the set of pairwise direct interactions in the microarray dataset, in the

form of rules. The recall of direct interactions in R is:

Recall =
# rules in R ∩ B

# rules in B
(5.9)

Confidence (%)
Precision (%) Recall(%)

RERIIa MAXCONF RERIIb MAXCONF

80 29.8 80.1 0.15 94.0

85 37.9 82.5 0.15 94.0

90 23.3 84.1 0.15 94.0

95 26.8 84.1 0.15 94.0

100 18.2 84.1 0.15 94.0

aSupport 5%
bSupport 5%

Table 5.5: Direct interactions identified in rules

The low recall of RERII was surprising considering the percentage of rules found

that contained at least one direct interaction (37.9% with 85% confidence). After

further inspection of these rules it was clear that many of the interactions were not

detected as 96.5% of the genes were immediately pruned (not satisfying support)

before RERII began. Furthermore, 99.96% of the rules from RERII containing

direct interactions, included the genes SNO1 and SNZ1.

Examples of rules displaying direct interactions are shown in Table 5.6. Both

Rules 1 and 3 in Table 5.6 would not be identified unless the support threshold

for RERII was decreased significantly (if possible with respect to memory require-

ments). Rule 3 with 100% confidence correctly describes the relationships between

the genes (CSE1 binds PCL5, which in-turn PCL5 is able to bind CRM1). Rule

2 with its high support, is the most common rule published to validate previous

approaches (Creighton and Hanash, 2003). The co-expression of CTF13 has been

hypothesised to be caused by the close proximity of CTF13 to SNO1 and SNZ1

(Creighton and Hanash, 2003).
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# Association Rule Supp (%) Conf (%) BIND Interac-

tion

1 FMP17⇒ ERG28 ERG25 0.60 100 ERG28:ERG25

2 CTF13⇒ SNO1 SNZ1 21.0 80.8 SNO1:SNZ1

3 CSE1⇒ CRM1 PCL5 0.33 100 PCL5:CSE1

PCL5:CRM1

Table 5.6: Association rules exhibiting direct interactions in yeast

Association Rule Supp (%) Conf (%)

1 EUG1 ⇒ BNA2, GSC2, PDH1, TFS1, THI5,

THI11, THI13, YGR043C, YML131W

1.30 100

2 SIL1⇒ AFR1, GSC2, YPS1, YOR289W 2.67 100

Table 5.7: Association rules exhibiting indirect interactions in yeast

5.4.3.2 Indirect Interactions

Many extracted association rules contain genes which interact indirectly via other

genes and their products. Table 5.7 shows two of these rules.

In Rule 1 of Table 5.7 the proteins encoded by genes BNA2, EUG1, PDH1, THI5,

THI13 and YML131W all bind the protein PRP20. THI11 binds directly to SNZ2

which binds PRP20. The remaining genes GSC2, TFS1 and YGR043C each bind

directly to NUP100. The gene NUP100 was not included in the microarray data.

However the genes SNZ2 and PRP20 were. Further, each gene in Rule 1 is in-

volved in cellular metabolism, with the gene BNA2, THI5, THI11 and THI13 be-

ing specifically involved in water soluble vitamin biosynthesis (GO, 2004).

In Rule 2 genes LSM8 and LSM2 connect genes YPS1 and SIL1 indirectly. The

protein products of LSM8 and LSM2 bind directly to each other. LSM8 then di-

rectly interacts with SIL1 and LSM2 directly interacts with YPS1. Therefore, Rule

2 has successfully identified the indirect interaction between genes SIL1 and YPS1

via LSM8 and LSM2 respectively. Further analysis of Rule 2 also shows that the

remaining proteins encoded by the genes AFR1, GSC2 and YOR289W all directly
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bind the protein product of STE12.

5.4.4 GOstat

The Gene Ontology (GO, 2004) is an international standard to annotate genes or-

ganised by their molecular function, biological process and cellular components.

For every gene in the GO database there is a link to its associated gene ontologies

that define it’s function. The GO has a hierarchical structure starting with top level

ontologies to specific descriptions.

GOstat (Beissbarth and Speed, 2004) is a query engine wrapper of the GO database

where by for a group of genes, GO annotations that are statistically over-represented

within the group can be obtained. This tool provides a useful method for analysing

the gene groups we identify.

The number of itemsets that formed rules which contained at least two genes that

were considered to be statistically over-represented by a GO are shown in Table

5.8. As expected, MAXCONF was able to identify many more relationships, some

of which are shown in Table 5.10. For example two genes in Rule 2 of Table 5.10

belong to the same ontology class (nuclear acid metabolism) which has a depth of

5 within the entire GO.

Confidence (%)
Absolute #Itemsets with GO Itemsets with GO Cluster (%)

RERII 2 MAXCONF 3 RERII 4 MAXCONF 5

80 323 899 63.5 74.9

85 187 773 65.6 78.3

90 69 693 59.4 82.7

95 34 690 60.7 82.9

100 7 690 63.6 82.9

Table 5.8: GO clusters identified in rules
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# Rule Supp (%) Conf (%)

1 FRE6⇒ SIT1, ARN1, ARN2, ENB1, FIT2, FIT3 4.33 100

2 AKR1 ⇒ CCC2, SIT1, FTR1, ARN1, ARN2,

FET3, ENB1, FIT2, FIT3

3.33 90

3 MAC1⇒ FRE7 0.33 100

Table 5.9: Association rules related to the Iron Uptake Pathway in yeast

5.4.4.1 Iron Uptake Pathway

S.cerevisiae has two different mechanisms to take up iron from the external en-

vironment for it to use in other processes, which combined form the iron uptake

pathway. A small sample of the rules identified by our system applicable to this

pathway are shown in Table 5.9

One system of the iron uptake pathway in yeast depends on a group of proteins,

specifically a family of high-affinity transporters encoded by the genes ARN1,

ARN2, SIT1 and ENB1. Therefore for this uptake sub-system to function each

of those genes need to be co-expressed.

Another sub-system of iron uptake requires some if not all the proteins FRE1-6,

FET3, FIT2-3 and FTR1.MAXCONF was able to detect such biological significant

patterns two of which are shown in Table 5.9 (Rules 1 and 2). These two rules

would not have been detected using the bottom-up Apriori approach to frequent

itemset mining as they would have needed to be pruned with respect to support to

reduce the search space.

Rule 3 in Table 5.9 is one of the many relationships which indicates the applicabil-

ity of our approach to perturbation microarray experiments. The gene MAC1 was

one of the genes chosen to be perturbed in the Hughes Compendium (Hughes et al.,

2000). While extracting many other gene relationships, we were also able to detect

relationships that boolean networks attempt to identify. Indeed Rule 3 correctly

describes the relationship between the genes MAC1 and FRE7, that is MAC1 is

a transcription factor which activates FRE7. Therefore FRE7 will only ever be

expressed if MAC1 is prior.



Chapter 5. Advances for Gene Networks from Knockout data 56

5.5 Summary

This chapter proposed a comprehensive algorithm to mine high confidence rules

from microarray data, without the need for support pruning. MAXCONF performs

two forms of confidence pruning to successfully reduce the search space. We intro-

duce two biological databases which are used to evaluate our approach with respect

to identifying gene relationships. The performance of MAXCONF is compared to

RERII and is shown to extract significantly more interesting gene relationships, in

significantly less time. A significant increase in recall is achieved using MAXCONF

(94%) compared to RERII (0.15%).
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Algorithm 4 MAXCONF - highly confident itemset mining

1: for all transactions t ∈ D do

2: // No single item set pruning

3: N := ∅

4: n := new Node(items = t.items, support = 1)

5: N.append(n)

6: MR := ∅ // set of maximal rules

7: MAXCONF depthfirst(N)

8: Procedure: MAXCONF depthfirst(N)

9: for all node ni ∈ N do

10: Children := ∅

11: if ni cannot be confident then

12: continue // Level 1 pruning

13: Determine support of ni, populate Children, and prune based on closure only

as in RERII.

14: M:= getMaxFeatures(ni ) // Line 27

15: if M , ∅ then

16: for all m ∈ M do

17: if m < ni.maxFeatures then

18: CR.append(m ⇒ {ni.items \ m})

19: for all child c ∈ Children do

20: if c ⊂M then

21: delete c // Level 2 pruning

22: else

23: c.maxFeatures.insert(ni .maxFeatures)

24: c.maxFeatures.insert(c ∪M)

25: if Childen , ∅ then

26: MAXCONF(Children)

27: Procedure: getMaxFeatures(n)

28: M := ∅ // set of maximal features

29: for all items i ∈ n.items do

30: if support(n) / support(i) ≥ min confidence then

31: M.insert(i)

32: return M
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# Rule Supp (%) Conf (%) GO Cluster

Genes GO Depth P-value

1 MEP2 ⇒ GLK1 GLC3 DMC1

HSP12 PRY1 NCA3 TFS1

MSC1 PGM2 YGP1

1 100 DMC1 MSC1 meotic recombination 9 0.0475

GLK1 GLC3 PGM2 carbohydrate metabolism 5 0.0475

HSP12 YGP1 cell communication 3 0.141

HSP12 MEP2 plasma membrane 4 0.172

2 ES C8⇒ IMD1 IMD2 1.3 100 ESC8 IMD2 nuclear acid metabolism 5 0.02

IMD1 unknown

3 POP1⇒ RRP7 2 85.7 POP1 RRP7 rRNA processing 8 0.0152

4 EUG1 ⇒ BNA2, GSC2, PDH1,

TFS1, THI5, THI11, THI13,

YGR043C, YML131W

1.30 100 THI5 BNA2 THI13 THI11 water soluble vitamin

metabolism

7 8.93e-06

BNA2 GCS2 THI5 THI13

THI11

cellular biosynthesis 5 0.067

THI5 EUG1 BNA2 TFS1 GSC2

THI13 THI11 PDH1

cellular metabolism 4 0.2

Table 5.10: Example rules containing GO clusters



Chapter 6

Advances for Gene Networks

from Temporal data

The rapid growth of temporal data being generated, has lead to increased efforts

in methods for discovering the hidden sequential patterns within the data. Existing

approaches are targeted to the general forms of sequential data, where the number

of items at a single time point (itemset) is comparatively smaller than the length

of the sequence and the number of transactions. As with standard frequent itemset

mining, algorithms designed for such data are not suitable for temporal microarray

analysis.

Temporal microarrays contain many relationships that are extremely useful in elu-

cidating gene networks. Most algorithms for generating gene networks were orig-

inally designed for this form of data. However these algorithms are bound by two

limitations:

1. The number of genes that can be analysed is restricted

2. The time space they are applied to is restricted

For example the Boolean network algorithms only considers how the behaviour of

genes at one time point relate to the expression of genes at another, i.e. only the

changes in gene expression between two consecutive time measurements.

59
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In this chapter we introduce and evaluate our algorithm SEQRE which mines se-

quential patterns using a top-down approach while addressing these two issues. We

conclude this chapter by introduceing

6.1 Sequential Pattern Mining

Sequential pattern mining algorithms are used to mine data that has some sequen-

tial nature. In the context of analysing customer purchasing behaviour, each se-

quential transaction is an ordered set of individual transactions by time, for exam-

ple:

5% of customers bought “The Fellowship of the Ring” and “The Two
Towers” in one transaction followed by “The Return of the King” in a
later transaction.

This problem was first introduced by Agrawal and Srikant (1995), and can be for-

malised as follows:

Each sequential pattern s, is a list of transactions, where each transaction is a set of

items present at a given time. A sequence with k transactions is called a k-sequence.

The ith transaction in a sequence is represented by si.

Definition 23 (Subsequence) A sequence a =< a1, a2..., an > is a subsequence of

b =< b1, b2..., bm > if there exists integers 1 ≤ i1 < i2 < ... < in ≤ m such that

a1 ⊆ bi1, a2 ⊆ bi2, ... an ⊆ bin

A subsequence s of S is denoted by s ⊆ S .

Definition 24 (Super-sequence) Given a sequence s and S such that s ⊆ S then

S is a super-sequence of s.

Definition 25 (Closed Sequence) A sequence S 1 is a closed sequence if there ex-

ists no sequence S 2 such that S 1 ⊂ S 2 and support(S 1) , support(S 2)

The gap constraint is often applied during the discovery process, to impose a limit

on the maximal distance between two consecutive transactions in a sequence. Us-

ing a gap constraint, it is possible to specify how much of an impact an event has on

closer events in time than on distant ones (Antunes and Oliveria, 2004). In using
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the gap constraint the notion of a subsequence needs to be adapted to a δ-distance

subsequence.

Definition 26 (δ-distance subsequence) A sequence a =< a1, a2..., an > is a δ-

distance subsequence of b =< b1, b2..., bm > if there exists integers 1 ≤ i1 < i2 <

... < in ≤ m such that a1 ⊆ bi1, a2 ⊆ bi2, ... an ⊆ bin and ik − ik−1 ≤ δ

A δ-subsequence s of S is denoted by s ⊆ δS . When δ = 1, no gaps occur between

consecutive items.

Example 1 Given the sequences, where the itemsets are ordered with respect to

time, and an itemset containing more than one item at a given time is inclosed with

brackets,

1. a(bc)dc

2. a(bc)

3. a(abc)(ac)d(c f )

Sequence 2 is a subsequence of sequence 1

Sequence 1 is a 2-distance subsequence of sequence 3.

Definition 27 (Frequent Sequential Pattern) A sequential pattern S is frequent

if the support of S is ≥ the minimum support.

A confidence threshold is not applicable to sequential pattern mining.

6.1.1 Search Space

The frequent itemset mining problem introduced in Chapter 4 is a particular case

of sequential pattern mining. Mining 1-sequential patterns is simply the search

for frequent itemsets. Considering this, sequential pattern mining is much more

challenging than frequent itemset mining. It not only involves the discovery of

frequent itemsets, but also the arrangement of those itemsets into sequences and the

discovery of which of those are frequent (Antunes and Oliveria, 2004). Therefore

the search space significantly increases.

Following Antunes and Oliveria (2004), given a database of sequences with at most
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m transactions and n different items, where each transaction has only one item,

there are nm possible different sequences with m transactions and N different arbi-

trary length sequence (Equation 6.1).

N =
m∑

k=1

nk
=

nm+1 − n
n − 1

(6.1)

Now considering that each transaction can contain an arbitrary number of items,

there would be S m possible frequent sequences, as in Equation 6.2, and there would

exist Θ(2nm) sequences in general (Equation 6.3).

S m = (2n − 1)m (6.2)

m∑

k=1

(2n − 1)k
=

(2n − 1)m+1 − 2n − 1
2n − 2

= Θ(2nm) (6.3)

The support monotonic property of frequent pattern mining is easily extended to

mining sequential patterns, and thus many algorithms based on support pruning of

patterns are available. However the difficulties of Apriori style algorithms exhibit

when mining frequent itemsets from microarray data, extends also to sequential

pattern mining of temporal microarrays.

6.2 SEQRE

A top-down approach to sequential pattern mining is outlined in this section. Our

algorithm SEQRE (Algorithms 5 and 6) successfully overcomes the limitations

imposed by other gene network algorithms such as Boolean networks and Apriori

style sequential pattern algorithms.

The algorithm RERII (Cong et al., 2004) cannot simply be applied to mine se-

quential patterns. SEQRE is possible with a modification of the row-enumeration

tree introduced in Cong et al. (2004), along with an extra support pruning method

which can only be applied to top-down sequential pattern mining. These properties

of SEQRE will be discussed in the following sections.
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6.2.1 SEQRE Algorithm

SEQRE begins like RERII, where all single items that are not supported are re-

moved from each transaction, followed by creating the first set of parent nodes

corresponding to the new transactions each with a support count of 1. Following

the depth first approach of RERII, a parent’s child nodes are formed by taking the

intersection between the parent and each of its sibling nodes. It is here that RERII

is no-longer applicable to sequential transactions. Two sibling sequential patterns

can have more than one pattern as an intersection. For example Figure 6.1 shows

the process of RERII with four sequential transactions in Table 6.1 as input. For

an interesting comparison, a snippet of a sequential-item-enumeration tree gener-

ated by a state-of-the-art Apriori style sequential algorithm (SPAM) (Ayres et al.,

2002) applied to the same dataset is shown Figure 6.2. From this it is clear that

the sequential-item-enumeration tree will become significantly larger than the one

generated by SEQRE when all items are considered.

Transaction Sequence

1 A, (ABC), A, B, D, E

2 A, (ABC), D

3 A, (BE), D, E

4 A, B

Table 6.1: Example sequential transaction set

Figure 6.1: RERII with sequential transactions in Table 6.1

The intersection between node 1 ({A,(ABC),A,B,D}) and node 2 ({A,(ABC),D})
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Figure 6.2: Snippet of sequential-item-enumeration tree generated by

SPAM (Ayres et al., 2002).

generates the sequences {A,(ABC)} and {A,B,D}. RERII would consider both of

these to be two sibling child nodes of {A,(ABC),A,B,D}. However, in the next enu-

meration {A,(ABC)} and {A,B,D} will be intersected, generating the child node

{A,B} with a support of 3, which is eventually increased to 5 after {A,(ABC)} is

intersected with {ABDE} and {AB}. This arises from taking the intersections be-

tween the nodes 1 and 2 more than once. This is incorrect – the maximum support

any sequence can have is bounded by the initial number of sequential transactions,

which is four in this example.

SEQRE overcomes this issue by altering the process of constructing the enumer-

ation tree. As SEQRE is best explained by example, we will continue to refer

to Figures 6.3, 6.4 and 6.5 based on the transactions in Table 6.1 to illustrate our

approach.
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6.2.1.1 Tree Representation

In SEQRE we represent each node N of the sequential row enumeration tree with

a two element group N = {sequenceList, childMap}, where the sequenceList is a

set of closed sequences (Definition 25) that are generated by intersecting the parent

node of N with one of its siblings. Each closed sequence has an individual support

count assigned to it. The childMap is simply a list of links to all child nodes.

For example, the node formed by the intersection between {A,(ABC),A,B,D} and

{A,(A,B,D),D} can be represented with { {A,(A,B,C) - 2 : A,B,D - 2} {A,B - 3}}.

6.2.1.2 Child Node Construction

Constructing the initial child nodes of the transaction nodes is straightforward (Fig-

ure 6.3, steps 1 - 4). The construction of the next generations of nodes is more

complicated and involves the following steps:

1. Construct Dummy Child Nodes

Given a node X with sequenceList x1, x2, ..., xi and a sibling node Y with se-

quenceList y1, y2, ..., y j, we will create individual dummy child nodes t1, t2, ... ti,

based on the following properties:

1. if x1 ∩ y1 = ∅ no dummy nodes need to be constructed.

2. if x1 ⊆ y1, then

• if |X| = 1, y1 is pruned/integrated into the sequence x1 and the support

of x1 is increased, as well as any of x1’s child nodes.

• else y1 becomes a dummy node of x1, with increased support.

3. if y1 ⊂ x1, then x1 ∩ y1 becomes a dummy node of x1 with increased

support if it has not been discovered previously.

4. if x1 , y1, then x1 ∩ y1 becomes a dummy node of x1 with increased

support if it has not been discovered previously.

Note that the support of xi can only increase by 1, even if it is contained within

more than one sequence of Y .
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In Figure 6.3(e), dummy nodes are drawn as boxes. The dummy node {A,B -3} is

formed by intersecting {A,(A,B,C)} with {A,B,D,E} – Property 3.

In Figure 6.4(a), when the sequence {A,B,D} is intersected with {A,B,D,E}, it

is found that {A,B,D} ⊂ {A,B,D,E}. When this is the case in RERII, the child

node {A,B,D} will not be created, and the parent node {A,B,D} support will be

increased. In SEQRE, only if the parent node has one sequence is its support

increased without child node expansion. This is not the case here, and the dummy

node {A,B,D - 3} is created – Property 2.

2. Construct Real Child Node

After all dummy child nodes of a node X and its sibling node Y are constructed

they are merged to form a single real child node. Any sequence of a dummy node

which is a subsequence of another is pruned to maintain the closure property. In

Figure 6.4(b) the dummy nodes {A,B} and {A,B,D} are merged to form the real

child node {A,B,D}. The dummy node {A,B} is pruned indicated by red stroke.

This real child node corresponds to the subsequence that is common between trans-

actions 1, 2 and 3, and thus has a support of 3.

Once all real child nodes of X are generated, the algorithm continues in a depth-first

manner (Figures 6.5(a) and 6.5(b)), until no child nodes can be formed.

6.2.1.3 Maximal Sequential Pattern Pruning

Mining all frequent closed sequential patterns will extract many redundant sequen-

tial patterns. In mining microarray data, the number of patterns found with suitable

support can be enormous. This will restrict a biologist’s understanding as they at-

tempt to navigate through and comprehend the sequential pattern space.

Ideally we would like to reduce the number of sequential patterns generated as

much as possible, without any loss of information to aid in a biologist’s interpreta-

tion of the results.

We observed that by searching for Maximal Sequential Patterns we do not lose any

information whilst reducing the number of patterns found.
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Definition 28 (Maximal Sequential Patterns) Let F be the set of frequent se-

quential patterns in a sequential dataset D. The set M of maximal sequential

patterns in D is the set of frequent sequential patterns whose super-patterns are

infrequent, formally

M = {P1 ∈ F |@ P2 ∈ F , P1 ⊂ P2} (6.4)

For example if the pattern x = {A,(BCD),E,F} is not frequent, but the pattern y =

{A,(BC)E,F} is, than y is a maximal pattern.

Traditional Apriori style methods introduced in Chapter 4 do not benefit from min-

ing maximal frequent patterns. A frequent pattern is considered maximal if none

of its immediate super-patterns are frequent. However, at any point in the Apriori

algorithm we only know the support of a sequential pattern’s sub-patterns and thus

we cannot determine if it is maximal until we generate and tests its super-patterns.

Therefore, in the process of generating maximal sequential patterns, all frequent

closed patterns will be generated. Thus there is no computational advantage for

Apriori methods to mine maximal sequential patterns.

Maximal sequential patterns can be mined using a our algorithm SEQRE efficiently

by successfully generating all maximal sequential patterns without considering any

of their sub-patterns. SEQRE can exploit the support downward closure property,

defined in Lemma 2. This property allows us to effectively prune all subpatterns

of a frequent sequential pattern when discovered, enabling the algorithm to return

from that depth first iteration. When a frequent sequential pattern is the first to be

discovered down a depth first path, it is a maximal sequential pattern, of all the

generations of patterns that may form below it. Based on this, SEQRE will never

consider any subpatterns of maximal sequential patterns. For example if we set the

support threshold to 3, no further enumeration is required below node {A,B,D} in

Figure 6.4(c) as all possible child nodes are guaranteed to be frequent.

Lemma 2 (Support Downward Closed) For a given frequent sequential pattern

of size ≥ 2 with support s, the support of its subpatterns are bounded below by

s. Thus if we identify a frequent sequential pattern P, all of its subpatterns are

redundant in that we can approximate their support from P.
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Proof 2 Let F be the set of frequent sequential patterns. Let P1 ⊆ P, P1 ∈ F and

P2 ⊂ P1, then

P2 ⊂ P1 =⇒ support(P2) ≥ support(P1) ≥ min support

=⇒ P2 ∈ F

This approach will make mining maximal sequential patterns more efficient than

algorithms searching for frequent closed sequential patterns. Another advantage of

this top-down approach is that we do not lose any information. We are guaranteed

that all subpatterns of a maximal sequential pattern have at least the support of the

maximal sequential pattern, and thus we effectively reduce the itemsets identified

without significant information loss.

6.3 SEQRE Analysis

We applied our proposed SEQRE algorithm to the yeast cell cycle temporal mi-

croarray data collected by Spellman et al. (1998). This dataset contains 4 sepa-

rate cell-cycle temporal experiments, each monitoring the expression level of 6177

genes over approximately 20 time frames, totally to 76 individual time frames. As

with our previous approach, we treat each gene as two individual items, one for its

up-regulation and the other for its down-regulation.

In this section we investigate the performance of SEQRE. We systematically anal-

yse our algorithm’s complexity issues and general effectiveness in generating pat-

terns which can be supported by existing biological experiments. As no prior algo-

rithms have been designed to analyse microarrays globally, it is difficult to compare

our results to others.

6.3.1 Computational Effectiveness

Table 6.2 shows the significant reduction in the number of patterns generated with

and without the extra support pruning. As such, the time required to generated the
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(a) Initialisation

(b) Step 1

(c) Step 2

(d) Step 3

(e) Step 4

Figure 6.3: SEQRE algorithm example - Part 1 (Min Support = 2)
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(a) Step 5

(b) Step 6

(c) Step 7

Figure 6.4: SEQRE algorithm example - Part 2 (Min Support = 2)
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(a) Step 8

(b) Step 9

Figure 6.5: SEQRE algorithm example - Part 3 (Min Support = 2)
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Support(%)
# Patterns

Closed Maximal

10 546869 114550

20 440235 88217

30 45161 20432

40 3149 2015

50 155 133

Table 6.2: Effect of support closure pruning for pattern extraction
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Figure 6.6: Scalability of SEQRE

maximal sequential patterns, is significantly less, highlighted in Figure 6.6.

To test the correctness of SEQRE we applied SEQRE to random datasets. Each

dataset was created by randomly permuting the order of the time series for each

gene independently. This maintains the composition of the time series, while in-

ducing independence between the genes. From such datasets it is not expected

that many patterns will be identified or exhibit true biological relationships. As

expected our approach extracted significantly less patterns on average, with no

patterns with support above 40% found (Table 6.3 ). From this we conclude that

many of the patterns we find from the real dataset are not spurious.
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Support(%) # Patterns

SEQRE Maximal Randoma Maximal

10 114550 12728

20 88217 6107

30 20432 529

40 2015 0

50 133 0

aaverage of 100 random repeats

Table 6.3: Robustness of SEQRE for pattern extraction

6.3.2 Biological Analysis

In this section we confirm our the ability of our approach to extract sensible pat-

terns between genes of known function. From our analysis we conclude that our

approach is capable of extracting patterns indicative of biological phenomena in

the data.

# Pattern Support(%)

1 {DBP3}, {CDC20}, {ASH1}, {NUM1, CLB1, CLB2,

TEC1, ASH1, CDC46 }, {SWI5, CLB1, CDC5, CLB2}

50

2 {NUM1},{CLB1 CDC5}, {CDC47, SWI5, CDC20,

CLB2, POL12, MCD1, RAD54, CDC45, CLN2, DPB2 },

{CDC47, DBF2, FAR1}, {RME1, ASH1, CDC46, EGT2}

25

3 {SWI5}, {CTS1}, {MNN1, CLN1}, {ASH1}, {KAR4,

ASH1, EGT2,AGA1}

27

4 {CDC42}, {STE20}, {DIG1 }, {FUS1, FUS3, STE12} 52

Table 6.4: Example patterns extracted by SEQRE

Original clustering and manual analysis of this dataset by Spellman et al. (1998)

identified 800 genes whose expression varied over the course of the experiments.

These genes were considered to be cell-cycle regulated.

By inspection of the pattern sets generated by SEQRE, we observed the existence
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of many dominant genes. Dominant genes are those that are strongly overrepre-

sented within the patterns and include the genes MCD1, RFA2, CDC45, CLN2,

POL30 and RAD53. A similar discovery was made by Friedman et al. (2000)

who applied Bayesian networks to the same dataset analysing only the 8001 genes

previously confirmed to be cell-cycle regulated. They concluded that the domi-

nate genes are the main genes directly involved in the initiation and the control

of the cell-cycle (Friedman et al., 2000). This is not a surprising result consid-

ering that Friedman et al. (2000) only analysed cell-cycle genes. With respect to

our approach, we consider that extracting such dominant gene relationships, from

the thousands of genes we analyse, is a positive result. The other temporal rela-

tionships we identify that contain genes not considered cell-cycle regulated, may

warrant further investigation. Identifying relationships not involving all cell-cycle

genes is not surprising – the cell-cycle is not the only cellular process that may

be occurring. For example pattern 4 in Table 6.4 correctly describes the MAPK

Signalling Pathway induced during nutrient starvation.

Furthermore, the Bayesian approach of Friedman et al. (2000) cannot include the

expression changes in two or more consecutive time points, whereas we have ap-

plied our approach to all time points in one process successfully.

6.4 Gene Network Construction

Standard association rule mining methods applied to low density data typically

generates a large number of rules. Closed itemset generation and other measures

of interestingness are often incorporated into the mining process to reduce this rule

set without information loss. Furthermore, rule compression and rule clustering

methods (Gupta et al., 1999; Lent et al., 1997) can be applied to reduce the rule set.

However, the size of the rule set is still often impossible for users to comprehend.

This is certainly the case for microarray data.

The process of generating gene networks from the gene relationships extracted

from Boolean and Bayesian approaches is simple due to the limitations on the

1Here many individual Bayesian networks were constructed as only a small select group of genes

could be studied in each



Chapter 6. Advances for Gene Networks from Temporal data 75

number of genes that are analysed. The entire Boolean and Bayesian networks

can be drawn clearly and quickly. However, with the limited input its output is

too limited. Therefore, if information regarding a gene that was not within the

selected group studied is requested at a later time, an entirely new network must

be constructed. This is one of the major downfalls of not analysing microarrays

globally.

Unlike existing methods, MAXCONF and SEQRE extract relationships on a global

scale. Unfortunately this makes it impossible to view and understand the entire

network of relationships. With this in mind we propose a Local Gene Network

inspired by the Association Rule Network, which provides an effective method for

navigating and visualising the large rule space.

6.4.1 Association Rule Network

The recently proposed Association Rules Network (ARN) (Chawla et al., 2004) al-

lows one to understand the itemsets that are frequently associated with a selected

item of interest visually. They provide a method to see many of the relationships

that span from a goal item of interest. An ARN is a directed acyclic hyper-graph

with no backward edges or redundant paths which captures the relationships be-

tween items leading up to the selected item. The nodes correspond to frequent

items and the hyper-edges correspond to rules whose consequent has a cardinality

of one. An ARN is generated by recursively joining antecedent items that appear

in rules together with the current goal item as a single consequent with a hyper-

edge. Each hyper-edge is assigned a weight - the confidence of the respective rule.

Following construction, all cycles and reverse edges are pruned.

Figure 6.7(a) shows an ARN generated from the rules in Table 6.5 with goal item

E. Both items C and D are antecedents when E is a single consequent, and thus

are connected to E. Due to limitations in the ARN model, the node correspond-

ing to item C is only linked back to the item A, even though C also appears as a

consequent in Rule 2. This is discussed further in Section 6.4.2.
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# Rule Confidence

1 A⇒ C 0.9

2 B⇒ C,D 0.8

3 C,D⇒ E 0.9

4 E⇒ F,G 0.85

5 E⇒ H 0.7

6 G⇒ I 0.8

Table 6.5: Example association rules

6.4.2 Local Gene Network

ARNs appear ideal for modelling gene networks from association rules providing

biologists with a method for examining the gene relationships concerning a partic-

ular gene of interest. ARNs exhibit many structural similarities to gene networks,

such as logical AND (hyper-edges spanning more than two nodes) and OR (con-

sequents with multiple hyper-edges connecting their antecedents) relationships be-

tween genes like Boolean networks and provide a statistic of how well the network

models the observed expression data (edge confidence weight) similar to that of the

Bayesian network. However, from a biological perspective ARN generation suf-

fers from four main structural restrictions, each of which reduces the knowledge

one may extract about a goal item.

1. The goal item must appear as a singleton consequent in the rule set – this

potentially ignores many relationships, and is the case for C in rule 2

2. The network is only generated backwards from the goal item. No forward

relationships are depicted

3. No cycles are allowed – cycles can reveal important biological mechanisms

such as Feed Forward Loops and Feed Backward Loops (Milo et al., 2002).

4. No negative relationships – in the case of microarray data we wish to know

genes which activate and inactivate the goal gene and which genes the goal

gene may activate or inactivate.
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(a) Association Rule Network
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Figure 6.7: Example ARN and LGN with goal node E and corresponding

hyper-edge confidence values, reflecting item relationships from rules in

Table 6.5.

We propose a Local Gene Network (LGN) to model the local relationships of genes

with a gene of interest, which overcomes the restrictions of the ARN, providing all

possible relationships. Despite the following definitions and properties of LGNs

being introduced in the context of association rules, the LGN is not restricted to

such relationships. Each property can be easily extended for sequential relation-

ships, as each k-pattern can be treated as a set of k rules.

Definition 29 (Local Gene Network) Given a set of association rules R describ-

ing relationships between genes and a frequent goal gene z, which appears in a

antecedent or consequent of a rule r ∈ R, a local gene network, LGN(R, z) is a

weighted graph such that

1. There is a hyper-edge which corresponds to a rule r0 whose consequent con-

tains the gene z and/or a rule r1 whose antecedent contains the gene z.

2. Each hyper-edge in LGN(R,z) corresponds to an association rule R local to
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z.

3. Each hyper-edge in LGN(R,z) can represent one of four relationships, arising

from the four types of rules.

(a) Positive activating A⇒ B

(b) Negative activating A⇒ B

(c) Positive repression A⇒ B

(d) Negative repression A⇒ B

4. The weight of each hyper-edge in LGN(R,z) is the confidence of it’s corre-

sponding rule.

5. Any gene i < LGN is not local from gene z.

Definition 30 (Local Association Rule) An association rule r ∈ R, is local to the

goal item if their exists a forward or backward path of length L from the goal to the

antecedent or consequent of r. The length L is the preselected maximum distance

item nodes can be from the goal.

The Local Gene Network in Figure 6.7(b) was generated from the rules in Table 6.5

and depicts the usefulness of LGNs compared to ARNs. An obvious improvement

of the LGN is the incorporation of the item B which is not contained in the ARN

as the item C is not a single consequent in Rule 2. Furthermore LGNs successfully

display all forward relationships from E (Rules 4 and 5 in Table 6.5).

We constructed Local Gene Networks from the association rules we discovered

using MAXCONF and SEQRE, four of which are shown in Figures 6.8, 6.9, 6.10

and 6.11. These gene networks can be interpreted as follows:

1. Black Full arrows represent Positive activating relationships

2. Black Dashed arrows represent Negative activating relationships

3. Red Full Barred arrows represent Positive repression relationships

4. Red Dashed Barred arrows represent Negative repression relationships
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6.5 Summary

This chapter presented the first top-down algorithm for sequential pattern mining.

We show that our approach efficiently mines sequential patterns from temporal mi-

croarray data, incorporating all genes and time measurements. This is a significant

improvement to existing algorithms. An evaluation of the sequential patterns we

extract is provided indicating the strengths of our approach in identifying biolog-

ical relationships. This chapter concludes by introducing our LGN model which

effectively provides a tool to visualise and navigate the complex relationships we

identify, some of which are shown in Figures 6.8 - 6.11.
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Figure 6.8: LGN with goal gene CLN3 where distance = 3
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Algorithm 5 SEQRE - maximal sequential pattern mining - Part 1

Input: Min support, Dataset D of sequential transactions

1: for all transactions t ∈ D do

2: Remove all infrequent items from t

3: N := ∅

4: n := new Node(patterns = t.pattern, support = 1)

5: N.append(n)

6: P := ∅ // Maximal Frequent Patterns

7: Discovered : = ∅ // Frequent Patterns idenfied

8: SEQRE depthfirst(N, P)

9: Procedure: SEQRE depthfirst(N, P)

10: for all node ni in N do

11: Children := ∅ // Real child nodes.

12: for all node n j in N where n j > ni do

13: dummy Children : = ∅

14: for all pattern pi in ni do

15: dummy pi : = ∅ // Dummy child nodes of pi.

16: pi.incrementSup:= FALSE

17: if pi can not be frequent then

18: continue

19: for all pattern p j in n j do

20: intersections := getIntersection(pi , p j)

21: if intersections , ∅ then

22: call SEQRE pruning growth(pi,p j)

23: if pi.support ≥ min support then

24: P.append(pi)

25: // Support downward closed - No need to expand children

26: dummy pi : = ∅

27: else

28: dummy Children.append(dummy pi)

29: // Construct Real Children

30: child := mergeDummies(dummy Children)

31: Children.append(child)

32: if Children , ∅ then

33: call SEQRE depthfirst(Children, P)
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Algorithm 6 SEQRE - maximal sequential pattern mining - Part 2

1: Procedure: SEQRE pruning growth(pi,p j)

2: if pi ⊆ p j then

3: delete p j

4: if |ni | ≥ 1 then

5: dummy := new Node(pi.sequence, pi.support + 1)

6: dummy pi.append(dummy)

7: else if pi.incrementSup == FALSE then

8: pi.support++

9: pi.incrementSup = TRUE

10: if pi ⊃ p j then

11: if pi ∪ p j not discovered before then

12: dummy := new Node(pi.sequence, pi.support + 1)

13: dummy pi.append(dummy)

14: if pi , p j then

15: if pi ∪ p j not discovered before then

16: dummy := new Node(pi.sequence, pi.support + 1)

17: dummy pi.append(dummy)
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Algorithm 7 Local Gene Network

Input: Rules R, Target Gene, maxLocal, Network N

visitedCons[i] = 1 if i has been visited as a consequent

visitedAnte[i] = 1 if i has been visited as a antecedent

call build LGN(target, maxLocal)

call build LGN(-target, maxLocal)

Procedure: build LGN(target,local)

1: if local < 0 then

2: return

3: /* Get all rules which have target as an antecedent */

4: RuleSubset := Rules.getRulesAnte(R, target)

5: for all rule r ∈ RuleS ubset do

6: for all antecedent ∈ r do

7: if visitedAnte[antecedent] = 0 then

8: /* Directed edge from antecedent to target with weight confidence */

9: if target = negative then

10: N.add edge(antecedent, target, r.confidence, inactivate)

11: else

12: N.add edge(antecedent, target, r.confidence, activate)

13: call build LGN(antecedent, local-1)

14: /* Get all rules which have target as a consequent */

15: RuleSubset := Rules.getRulesCons(R, target)

16: for all rule r ∈ RuleS ubset do

17: for all consequent ∈ r do

18: if visitedCons[consequent] == 0 then

19: /* Directed edge from target to consequent with weight confidence*/

20: if consequent = negative then

21: N.add edge(target, consequent, r.confidence, inactivate)

22: else

23: N.add edge(target, consequent, r.confidence, activate)

24: call build LGN(consequent, local-1)



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Microarrays have the potential to revolutionise the way in which biological re-

search is carried out. One main objective of molecular biologists is to develop a

deeper understanding of how different cells control and regulate the expression of

their genes. These mechanisms can be depicted in gene networks. However, each

microarray experiment generates an enourmous amount of information for which

biologists have no effective means to explore and therefore many gene relation-

ships remain hidden.

Existing methods for extracting gene networks from microarrays suffer from two

main short-comings. They significantly restrict the search space to only a sub-

set of genes and consecutive time measurements. This is because microarray data

is dense, rendering many data mining techniques infeasible. Recently top-down

association rule mining methods have emerged to facilitate the mining of microar-

ray data. These approaches can consider all the genes in a microarray experi-

ment. However, they are still limited in the information they can extract. These

algorithms rely on the support measure to restrict the search space, leaving many

potentially interesting relationships which have low support and high confidence

undiscovered.

84
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In this thesis we presented the first comprehensive confidence based top-down al-

gorithm MAXCONF which is capable of identifying interesting gene relationships

on a global genome scale. We show that our approach efficiently identifies high

confidence rules without support pruning. Further we demonstrate the biological

significance of the relationships we identify. The main result of our evaluation

against existing methods based on support pruning indicates that we achieve a sig-

nificant recall improvement with an increase from 0.15% to 94%.

We also presented the first top-down algorithm specifically designed to mine se-

quential patterns from microarrays without any search space restrictions. SEQRE

is the only algorithm to date that is capable of handling the complexity of tempo-

ral microarray data. SEQRE efficiently mines sequential patterns from temporal

microarrays considering all consecutive time frames and all genes. This is pos-

sible due to the extra pruning property of support we identified, which can only

be exploited in top-down sequential pattern mining algorithms. Our evaluation of

SEQRE demonstrates that it identifies many biological relationships.

Both of the algorithms MAXCONF and SEQRE presented in this thesis are shown

to identify thousands of gene relationships, which would be impossible for a bi-

ologist to interpret. We propose the Local Gene Network to provide a network

visualisation to aid navigation through this large relationship space.

In this thesis, we have provided complete, principled and efficient solutions for the

mining, integration and analysis of microarrays. Each of our approaches will bene-

fit the biological community tremendously by finally providing them with effective

tools to analyse and extract gene networks from microarrays.

7.2 Future Work

An important open area for future work is to combine the relationships identified

from both Knockout and Temporal microarray experiments. Both types of mi-

croarrays provide a wealth of very different, detailed information about the genes

studied. Therefore, a method to combine all gene relationships will produce a sig-

nificantly more detailed gene network, providing biologists with as much informa-
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tion as possible. An algorithm which can take both forms of data simultaneously

would be very interesting and challenging to develop.

Another direction our work may take is to extend our algorithms to allow incremen-

tal network construction. This approach is inspired by the way in which biologists

carry out their microarray experiments. Biologists do not typically carry out all

microarray experiments at once. Often a biologist decides to carry out more exper-

iments to test new hypotheses driven from previous experiments. With this method

it is expected that over time a large library of microarrays for a single organism will

become available. This situation is ideal - the more microarrays that are available

for network construction, the more statistically sound the gene relationships iden-

tified will be. However, a biologist should not need to wait until the completion

of all experiments to extract gene relationships. Therefore it would be of interest

to modify our algorithms to allow incremental network reconstruction, so to refine

the gene relationships when new data becomes available.

Finally, our work will not only benefit those within the biological community. Our

research not only introduces new techniques for microarray analysis. The data

mining ideas behind both our MAXCONF and SEQRE algorithms are directly ap-

plicable to other dense datasets. It would be interesting to see how our approaches

perform on such datasets.
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